已知
是二次函數(shù),不等式
的解集是
,且
在點(diǎn)
處的切線與直線
平行.求
的解析式;
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在
與
時都取得極值
(1)求
的值與函數(shù)
的單調(diào)區(qū)間
(2)若對
,不等式
恒成立,求c的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(I)求函數(shù)
圖象上的點(diǎn)
處的切線方程;
(Ⅱ)已知函數(shù)
,其中
是自然對數(shù)的底數(shù),![]()
對于任意的
,
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(I)當(dāng)
時,討論函數(shù)
的單調(diào)性:
(Ⅱ)若函數(shù)
的圖像上存在不同兩點(diǎn)
,
,設(shè)線段
的中點(diǎn)為
,使得
在點(diǎn)
處的切線
與直線
平行或重合,則說函數(shù)
是“中值平衡函數(shù)”,切線
叫做函數(shù)
的“中值平衡切線”.
試判斷函數(shù)
是否是“中值平衡函數(shù)”?若是,判斷函數(shù)
的“中值平衡切線”的條數(shù);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(1)若函數(shù)
在x=1處與直線
相切.
①求實(shí)數(shù)
,
的值;②求函數(shù)
在
上的最大值.
(2)當(dāng)
時,若不等式
對所有的
都成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)求切于點(diǎn)
的切線方程;
(3)求函數(shù)
在
上的最大值與最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)有極值-
.
(1)求函數(shù)的解析式.
(2)若方程f(x)=k有3個不同的根,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.(1)求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
.若至少存在一個
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com