【題目】在直三棱柱
中,
,底面三邊長分別為3,5,7,
是上底面
所在平面內(nèi)的動(dòng)點(diǎn),若三棱錐
的外接球表面積為
,則滿足題意的動(dòng)點(diǎn)
的軌跡對(duì)應(yīng)圖形的面積為________.
【答案】![]()
【解析】
設(shè)
為
外接圓圓心,作
平面
,根據(jù)三棱錐外接球的性質(zhì)可知球心
為
上一點(diǎn);在
中,結(jié)合正余弦定理可求得
的外接圓半徑,進(jìn)而勾股定理可求得球心到平面
的距離,再利用勾股定理求得
,可得
點(diǎn)軌跡為圓,進(jìn)而求得結(jié)果.
不妨設(shè)
,
,
,
設(shè)
為
外接圓圓心,作
平面
,交平面
于點(diǎn)
,由三棱錐外接球的性質(zhì)可知,球心
為
上一點(diǎn).
![]()
設(shè)三棱錐
外接球半徑為
,
三棱錐
外接球表面積
,
.
在
中,由余弦定理得:
,
,由正弦定理得:
,
,即
,
,
,
即點(diǎn)
的軌跡對(duì)應(yīng)的圖形是以
為圓心,
為半徑的圓,
對(duì)應(yīng)的圖形面積為
.
故答案為:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐
中,
,
,
,
,點(diǎn)
分別為
的中點(diǎn).
![]()
(1)證明:平面
∥平面
;
(2)若
,求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓:
(
)的離心率為
,右準(zhǔn)線方程是直線l:
,點(diǎn)P為直線l上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作橢圓的兩條切線![]()
,切點(diǎn)分別為AB(點(diǎn)A在x軸上方,點(diǎn)B在x軸下方).
![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)①求證:分別以![]()
為直徑的兩圓都恒過定點(diǎn)C;
②若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且過點(diǎn)
.
(1)求橢圓C的方程;
(2)若點(diǎn)A、B為橢圓C的左右頂點(diǎn),直線
與x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A、B的動(dòng)點(diǎn),直線AP、BP分別交直線
于E、F兩點(diǎn),當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),
是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:
![]()
根據(jù)該折線圖可知,下列說法錯(cuò)誤的是( )
A. 該超市2018年的12個(gè)月中的7月份的收益最高
B. 該超市2018年的12個(gè)月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占
,統(tǒng)計(jì)成績后得到如下
列聯(lián)表:
分?jǐn)?shù)不少于120分 | 分?jǐn)?shù)不足120分 | 合計(jì) | |
線上學(xué)習(xí)時(shí)間不少于5小時(shí) | 4 | 19 | |
線上學(xué)習(xí)時(shí)間不足5小時(shí) | |||
合計(jì) | 45 |
(1)請(qǐng)完成上面
列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;
(2)在上述樣本中從分?jǐn)?shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于5小時(shí)和線上學(xué)習(xí)時(shí)間不足5小時(shí)的學(xué)生共5名,若在這5名學(xué)生中隨機(jī)抽取2人,求至少1人每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的概率.
(下面的臨界值表供參考)
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式
其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的內(nèi)角
所對(duì)的邊分別為
,_________,且
.現(xiàn)從:①
,②
,③
這三個(gè)條件中任選一個(gè),補(bǔ)充在以上問題中,并判斷這樣的
是否存在,若存在,求
的面積
_________;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)過后,甲、乙、丙三人談?wù)摰接嘘P(guān)
部電影
,
,
的情況.
甲說:我沒有看過電影
,但是有
部電影我們?nèi)齻(gè)都看過;
乙說:三部電影中有
部電影我們?nèi)酥兄挥幸蝗丝催^;
丙說:我和甲看的電影有
部相同,有
部不同.
假如他們都說的是真話,則由此可判斷三部電影中乙看過的部數(shù)是( )
A.
部B.
部C.
部D.
部或
部
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com