【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(Ⅰ)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(Ⅱ)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=
時,求直線CD的方程.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
:
的離心率為
,過其右焦點(diǎn)
與長軸垂直的直線與橢圓在第一象限相交于點(diǎn)
,
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓
的左頂點(diǎn)為
,右頂點(diǎn)為
,點(diǎn)
是橢圓上的動點(diǎn),且點(diǎn)
與點(diǎn)
,
不重合,直線
與直線
相交于點(diǎn)
,直線
與直線
相交于點(diǎn)
,求證:以線段
為直徑的圓恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題
已知P為橢圓
上任意一點(diǎn),
,
是橢圓的兩個焦點(diǎn),則
的范圍是
;
已知M是雙曲線
上任意一點(diǎn),
是雙曲線的右焦點(diǎn),則
;
已知直線l過拋物線C:
的焦點(diǎn)F,且l與C交于
,
兩點(diǎn),則
;
橢圓具有這樣的光學(xué)性質(zhì):從橢圓的一個焦點(diǎn)出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點(diǎn),今有一個水平放置的橢圓形臺球盤,點(diǎn)
,
是它的焦點(diǎn),長軸長為2a,焦距為2c,若靜放在點(diǎn)
的小球
小球的半徑忽略不計
從點(diǎn)
沿直線出發(fā)則經(jīng)橢圓壁反射后第一次回到點(diǎn)
時,小球經(jīng)過的路程恰好是4a.
其中正確命題的序號為______
請將所有正確命題的序號都填上![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三棱柱
的底面邊長是2,側(cè)棱長是
,
是
的中點(diǎn).
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)在線段
上是否存在一點(diǎn)
,使得平面
平面
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)討論函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)
在
處取得極值,對
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表為
年至
年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼
年份
.
年份代碼 |
|
|
|
|
線下銷售額 |
|
|
|
|
(1)已知
與
具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程,并預(yù)測
年該百貨零售企業(yè)的線下銷售額;
(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機(jī)調(diào)查了
位男顧客、
位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有
人、女顧客有
人,能否在犯錯誤的概率不超過
的前提下認(rèn)為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列
的前
項和為
,且
(
),設(shè)
(
),數(shù)列
的前
項和
.
(1)求
、
、
的值;
(2)利用“歸納—猜想—證明”求出
的通項公式;
(3)求數(shù)列
的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)
,
是以
為底邊的等腰三角形,點(diǎn)
在直線
:
上.
![]()
(1)求
邊上的高
所在直線的方程;
(2)求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐
及其側(cè)視圖、俯視圖如圖所示.設(shè)
,
分別為線段
,
的中點(diǎn),
為線段
上的點(diǎn),且
.
![]()
(1)證明:
為線段
的中點(diǎn);
(2)求二面角
的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com