【題目】已知函數(shù)
(
為自然對(duì)數(shù)的底數(shù)).
(1)若對(duì)于任意實(shí)數(shù)
,
恒成立,試確定
的取值范圍;
(2)當(dāng)
時(shí),函數(shù)
在
上是否存在極值?若存在,請(qǐng)求出這個(gè)極值;若不存在,請(qǐng)說明理由.
【答案】(1)
;(2)見解析
【解析】
(1)利用參變分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,再利用導(dǎo)數(shù)研究對(duì)應(yīng)函數(shù)最值,即得結(jié)果,(2)利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)單調(diào)性確定函數(shù)極值是否存在.
(1)∵對(duì)于任意實(shí)數(shù)
恒成立,
∴若
,則
為任意實(shí)數(shù)時(shí),
恒成立;
若
恒成立,即
,在
上恒成立,
設(shè)
,則
,
當(dāng)
時(shí),
,則
在
上單調(diào)遞增;
當(dāng)
時(shí),
,則
在
上單調(diào)遞減;
所以當(dāng)
時(shí),
取得最大值,
,
所以
的取值范圍為
.
綜上,對(duì)于任意實(shí)數(shù)
恒成立的實(shí)數(shù)
的取值范圍為
.
(2)依題意,
,
所以
,
設(shè)
,則
,當(dāng)
,
故
在
上單調(diào)增函數(shù),因此
在
上的最小值為
,
即
,
又
所以在
上,
,
所以
在
上是增函數(shù),
即
在
上不存在極值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了選拔學(xué)生參加全市中學(xué)生物理競賽,學(xué)校先從高三年級(jí)選取60名同學(xué)進(jìn)行競賽預(yù)選賽,將參加預(yù)選賽的學(xué)生成績(單位:分)按范圍
,
,
,
分組,得到的頻率分布直方圖如圖:
![]()
(1)計(jì)算這次預(yù)選賽的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若對(duì)得分在前
的學(xué)生進(jìn)行校內(nèi)獎(jiǎng)勵(lì),估計(jì)獲獎(jiǎng)分?jǐn)?shù)線;
(3)若這60名學(xué)生中男女生比例為
,成績不低于60分評(píng)估為“成績良好”,否則評(píng)估為“成績一般”,試完成下面
列聯(lián)表,是否有
的把握認(rèn)為“成績良好”與“性別”有關(guān)?
成績良好 | 成績一般 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:
,![]()
臨界值表:
| 0.10 | 0.05 | 0.010 |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓
的圓心為
,直線l過點(diǎn)
且與x軸不重合,l交圓
于
兩點(diǎn),過點(diǎn)
作
的平行線交
于點(diǎn)
.
(1)證明
為定值,并寫出點(diǎn)
的軌跡方程;
(2)設(shè)點(diǎn)
的軌跡為曲線
,直線
與曲線
交于
兩點(diǎn),點(diǎn)
為橢圓
上一點(diǎn),若
是以
為底邊的等腰三角形,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
表示不大于實(shí)數(shù)
的最大整數(shù),函數(shù)
,若關(guān)于
的方程
有且只有5個(gè)解,則實(shí)數(shù)
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)求
在區(qū)間
上的最小值.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】(Ⅰ)
.
令
,得
.
![]()
與
的情況如上:
所以,
的單調(diào)遞減區(qū)間是
,單調(diào)遞增區(qū)間是
.
(Ⅱ)當(dāng)
,即
時(shí),函數(shù)
在
上單調(diào)遞增,
所以
在區(qū)間
上的最小值為
.
當(dāng)
,即
時(shí),
由(Ⅰ)知
在
上單調(diào)遞減,在
上單調(diào)遞增,
所以
在區(qū)間
上的最小值為
.
當(dāng)
,即
時(shí),函數(shù)
在
上單調(diào)遞減,
所以
在區(qū)間
上的最小值為
.
綜上,當(dāng)
時(shí),
的最小值為
;
當(dāng)
時(shí),
的最小值為
;
當(dāng)
時(shí),
的最小值為
.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線
的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)
為拋物線
上一點(diǎn).
(1)求
的方程;
(2)若點(diǎn)
在
上,過
作
的兩弦
與
,若
,求證: 直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種類型的題目有
,
,
,
,
5個(gè)選項(xiàng),其中有3個(gè)正確選項(xiàng),滿分5分.賦分標(biāo)準(zhǔn)為“選對(duì)1個(gè)得2分,選對(duì)2個(gè)得4分,選對(duì)3個(gè)得5分,每選錯(cuò)1個(gè)扣3分,最低得分為0分”在某校的一次考試中出現(xiàn)了一道這種類型的題目,已知此題的正確答案為
,假定考生作答的答案中的選項(xiàng)個(gè)數(shù)不超過3個(gè).
(1)若甲同學(xué)無法判斷所有選項(xiàng),他決定在這5個(gè)選項(xiàng)中任選3個(gè)作為答案,求甲同學(xué)獲得0分的概率;
(2)若乙同學(xué)只能判斷選項(xiàng)
是正確的,現(xiàn)在他有兩種選擇:一種是將AD作為答案,另一種是在
這3個(gè)選項(xiàng)中任選一個(gè)與
組成一個(gè)含有3個(gè)選項(xiàng)的答案,則乙同學(xué)的最佳選擇是哪一種,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
![]()
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線
相切.
(Ⅰ)求圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),AN垂直于x軸于點(diǎn)N,若動(dòng)點(diǎn)Q滿足![]()
(其中m為非零常數(shù)),試求動(dòng)點(diǎn)Q的軌跡方程;
(Ⅲ)在(Ⅱ)的結(jié)論下,當(dāng)m=
時(shí),得到動(dòng)點(diǎn)Q的軌跡為曲線C,與l1垂直的直線l與曲線C交于B,D兩點(diǎn),求△OBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體
中,動(dòng)點(diǎn)
在線段
上運(yùn)動(dòng),且有
.
![]()
(1)若
,求證:
;
(2)若二面角
的平面角的余弦值為
,求實(shí)數(shù)
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com