如圖,平面
平面
,
是等腰直角三角形,
,四邊形
是直角梯形,
∥AE,![]()
![]()
,
,
分別為
的中點(diǎn).
![]()
(1)求異面直線
與
所成角的大小;
(2)求直線
和平面
所成角的正弦值.
(1)
,(2)![]()
【解析】
試題分析:(1)求空間角,一般利用空間向量解決.首先要建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,由平面
平面
及
,運(yùn)用面面垂直性質(zhì)定理,可得
,這樣確定豎坐標(biāo).橫坐標(biāo)與縱坐標(biāo)可根據(jù)右手系建立.因為異面直線
與
所成角
等于向量
與
夾角或其補(bǔ)角,而異面直線
與
所成角范圍為
,所以
,(2) 直線
和平面
所成角
與向量
與平面
法向量
夾角互余或相差
,而直線
和平面
所成角
范圍為
,所以
.
試題解析:
![]()
∵
,又∵面
面
,面
面
,
,∴
,∵BD∥AE,∴
, 2分
如圖所示,以C為原點(diǎn),分別以CA,CB為x,y軸,以過點(diǎn)C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系,∵
,∴設(shè)各點(diǎn)坐標(biāo)為
,
,
,
,
,
則
,
,
,
,
,
.
(1)
,
則
與
所成角為
. 5分
(2)設(shè)平面ODM的法向量
,則由
,且
可得![]()
令
,則
,
,∴
,設(shè)直線CD和平面ODM所成角為
,則
,
∴直線CD和平面ODM所成角的正弦值為
. 10分
考點(diǎn):利用空間向量求異面直線所成角及直線與平面所成角.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:044
如圖,已知CD是等邊三角形ABC邊AB上的高,沿CD將△ADC折起,使平面ADC與平面BDC互相垂直
(Ⅰ)求AB與平面BDC所成的角;
(Ⅱ)若O點(diǎn)在DC上,且分DC的比為
,求二面角A-BO-C的正切值.
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(Ⅰ)求AB與平面BDC所成的角;
(Ⅱ)若O點(diǎn)在DC上,且分DC的比為
,求二面角A-BO-C的正切值.
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,△VAD是等邊三角形,ABCD是矩形,
,平面VAD⊥平面ABCD,F(xiàn)為AB中點(diǎn)。
(1)求VC與平面ABCD所成角的大小;
(2)當(dāng)V到平面ABCD的距離為3時,求B到平面VFC的距離。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河北省保定市徐水綜合高中高三數(shù)學(xué)三輪專題復(fù)習(xí):立體幾何(解析版) 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com