【題目】設函數f(x)=(x﹣a)2lnx,a∈R
(1)證明:函數f(x)=(x﹣a)2lnx,a∈R的圖象恒經過一個定點;
(2)若函數h(x)=
f′(x)在(0,+∞)有定義,且不等式h(x)≤0在(0,+∞)上有解,求實數a的取值范圍.
【答案】
(1)解:x=1時,f(1)=0,
故f(x)恒過(1,0)點
(2)解:∵f′(x)=2(x﹣a)lnx+
,
∴h(x)=2xlnx+x﹣a,(x>0),
若不等式h(x)≤0在(0,+∞)上有解,
則a≥(2xlnx+x)min即可,
令m(x)=2xlnx+x,(x>0),則m′(x)=3+2lnx,
令m′(x)>0,解得:x>
,令m′(x)<0,解得:0<x<
,
∴m(x)在(0,
)遞減,在(
,+∞)遞增,
∴m(x)min=m(
)=﹣2
,
∴a∈[
,+∞).
【解析】(1)求出x=1時,f(1)=0,得到函數f(x)恒過(1,0)即可;(2)問題轉化為a≥(2xlnx+x)min即可,令m(x)=2xlnx+x,(x>0),根據函數的單調性求出m(x)的最小值,從而求出a的范圍.
【考點精析】根據題目的已知條件,利用函數的最大(小)值與導數的相關知識可以得到問題的答案,需要掌握求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠BAD=60°,M為DC的中點,若N為菱形內任意一點(含邊界),則
的最大值為( ) ![]()
A.3
B.2 ![]()
C.6
D.9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=4,AB=4
,∠CDA=120°,點N在線段PB上,且PN=2. ![]()
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)若函數f(x)=|2x﹣1|+|2x﹣3|的最小值,并求取的最小值時x的取值范圍;
(2)若g(x)=
的定義域為R,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:函數
,當x∈(-3,2)時,
>0,當x∈(-
,-3)
(2,+
)時,
<0
(I)求a,b的值;
(II)若不等式
的解集為R,求實數c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列有關命題的說法正確的是( )
A. 命題“若
,則
”的逆命題為真命題;
B. 命題“若
或
,則
”的否命題為真命題;
C. 命題“
”為真命題,則命題p和q均為真命題;
D. 命題“若
,則
”的逆否命題為假命題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=blnx,g(x)=ax2﹣x(a∈R).
(1)若曲線f(x)與g(x)在公共點A(1,0)處有相同的切線,求實數a、b的值;
(2)在(1)的條件下,證明f(x)≤g(x)在(0,+∞)上恒成立;
(3)若a=1,b>2e,求方程f(x)﹣g(x)=x在區間(1,eb)內實根的個數(e為自然對數的底數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代的數學巨著,內容極為豐富,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”意思是:“5人分取5錢,各人所得錢數依次成等差數列,其中前2人所得錢數之和與后3人所得錢數之和相等.”,則其中分得錢數最多的是( )
A.
錢
B.1錢
C.
錢
D.
錢
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com