【題目】己知f(x)=x2﹣2x+2,在[
,m2﹣m+2]上任取三個(gè)數(shù)a,b,c,均存在以 f(a),f(b),f(c)為三邊的三角形,則m的取值范圍為( )
A.(0,1)
B.[0,
)
C.(0,
]
D.[
,
]
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,側(cè)面ABB1A1為菱形,∠DAB=∠DAA1 . ![]()
(Ⅰ)求證:A1B⊥BC;
(Ⅱ)若AD=AB=3BC,∠A1AB=60°,點(diǎn)D在平面ABB1A1上的射影恰為線段A1B的中點(diǎn),求平面DCC1D1與平面ABB1A1所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
、
,
為橢圓
的右頂點(diǎn),
,
分別為橢圓
的上、下頂點(diǎn).線段
的延長(zhǎng)線與線段
交于點(diǎn)
,與橢圓
交于點(diǎn)
.(1)若橢圓的離心率為
,
的面積為12,求橢圓
的方程;(2)設(shè)
,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動(dòng),為了解本次考試學(xué)生的某學(xué)科成績(jī)情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為
分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在
之內(nèi))作為樣本(樣本容量為
)進(jìn)行統(tǒng)計(jì),按照
的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在
的數(shù)據(jù))
![]()
(Ⅰ)求樣本容量
和頻率分布直方圖中的
的值;
(Ⅱ)在選取的樣本中,從成績(jī)?cè)?/span>
分以上(含
分)的學(xué)生中隨機(jī)抽取
名學(xué)生參加“省級(jí)學(xué)科基礎(chǔ)知識(shí)競(jìng)賽”,求所抽取的
名學(xué)生中恰有一人得分在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某河道中過度滋長(zhǎng)一種藻類,環(huán)保部門決定投入生物凈化劑凈化水體. 因技術(shù)原因,第t分鐘內(nèi)投放凈化劑的路徑長(zhǎng)度
(單位:m),凈化劑凈化水體的寬度
(單位:m)是時(shí)間t(單位:分鐘)的函數(shù):
(
由單位時(shí)間投放的凈化劑數(shù)量確定,設(shè)
為常數(shù),且
).
(1)試寫出投放凈化劑的第t分鐘內(nèi)凈化水體面積
的表達(dá)式;
(2)求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)在開學(xué)季準(zhǔn)備銷售一種盒飯進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該盒飯獲利潤(rùn)10元,未售出的產(chǎn)品,每盒虧損5元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購(gòu)進(jìn)了150盒該產(chǎn)品,以
(單位:盒,
)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,
(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
![]()
(Ⅰ)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量
的平均數(shù)和眾數(shù);
(Ⅱ)將
表示為
的函數(shù);
(Ⅲ)根據(jù)頻率分布直方圖估計(jì)利潤(rùn)
不少于1350元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系
取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸)中,直線
的方程為
.
(1)求曲線
的普通方程及直線
的直角坐標(biāo)方程;
(2)設(shè)
是曲線
上的任意一點(diǎn),求點(diǎn)
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ![]()
(1)求函數(shù)
的定義域;
(2)若存在a∈R,對(duì)任意
,總存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1),
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com