【題目】設(shè)
,數(shù)列
滿足
,
,將數(shù)列
的前100項(xiàng)從大到小排列得到數(shù)列
,若
,則k的值為______;
【答案】![]()
【解析】
根據(jù)遞推公式利用數(shù)學(xué)歸納法分析出
與
的關(guān)系,然后考慮將
的前
項(xiàng)按要求排列,再根據(jù)項(xiàng)的序號(hào)計(jì)算出滿足的
值即可.
由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;
∵![]()
∴1>a2>a1
∴
,
∴a2>a3>a1
∵
,且![]()
∴a2>a4>a3>a1
……
當(dāng)
為奇數(shù)時(shí),用數(shù)學(xué)歸納法證明
,
當(dāng)
時(shí),
成立,
設(shè)
時(shí),
,
當(dāng)
時(shí),因?yàn)?/span>
,結(jié)合
的單調(diào)性,
所以
,所以
即
,所以
時(shí)成立,
所以
為奇數(shù)時(shí),
;
當(dāng)
為偶數(shù)時(shí),用數(shù)學(xué)歸納法證明
,
當(dāng)
時(shí),
成立,設(shè)
時(shí),
,
當(dāng)
時(shí),因?yàn)?/span>
,結(jié)合
的單調(diào)性,
所以
,所以
即
,所以
時(shí)成立,
所以
為偶數(shù)時(shí),
;
用數(shù)學(xué)歸納法證明:任意偶數(shù)項(xiàng)大于相鄰的奇數(shù)項(xiàng)即證:當(dāng)
為奇數(shù),
,
當(dāng)
時(shí),
符合,設(shè)
時(shí),
,
當(dāng)
時(shí),因?yàn)?/span>
,結(jié)合
的單調(diào)性,
所以
,所以
,所以
,所以
時(shí)成立,
所以當(dāng)
為奇數(shù)時(shí),
,
據(jù)此可知:
,
當(dāng)
時(shí),若
,則有
,此時(shí)
無(wú)解;
當(dāng)
時(shí),此時(shí)
的下標(biāo)成首項(xiàng)為
公差為
的等差數(shù)列,通項(xiàng)即為
,
若
,所以
,所以
.
故答案為:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對(duì)學(xué)生的期末復(fù)習(xí)有著重要的影響某校隨機(jī)抽取200名學(xué)生,對(duì)學(xué)習(xí)成績(jī)和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
善于使用學(xué)案 | 不善于使用學(xué)案 | 合計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 40 | ||
學(xué)習(xí)成績(jī)一般 | 30 | ||
合計(jì) | 200 |
已知隨機(jī)抽查這200名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.
參考公式:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(I)完成
列聯(lián)表(不用寫計(jì)算過(guò)程);
(Ⅱ)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績(jī)與對(duì)待學(xué)案的使用態(tài)度有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前共享單車基本覆蓋饒城市區(qū),根據(jù)統(tǒng)計(jì),市區(qū)所有人騎行過(guò)共享單車的人數(shù)已占
,騎行過(guò)共享單車的人數(shù)中,有
是學(xué)生(含大中專、高職及中學(xué)生),若市區(qū)人口按40萬(wàn)計(jì)算,學(xué)生人數(shù)約為9.6萬(wàn).
(1)任選出一名學(xué)生,求他(她)騎行過(guò)共享單車的概率;
(2)隨著單車投放數(shù)量增加,亂停亂放成為城市管理的問(wèn)題,如表是本市某組織累計(jì)投放單車數(shù)量
與亂停亂放單車數(shù)量
之間關(guān)系圖表:
累計(jì)投放單車數(shù)量 | 100000 | 120000 | 150000 | 200000 | 230000 |
亂停亂放單車數(shù)量 | 1400 | 1700 | 2300 | 3000 | 3600 |
計(jì)算
關(guān)于
的線性回歸方程(其中
精確到
,
值保留三位有效數(shù)字),并預(yù)測(cè)當(dāng)
時(shí),單車亂停亂放的數(shù)量;
(3)已知信州區(qū)、廣豐區(qū)、上饒縣、經(jīng)開(kāi)區(qū)四區(qū)中,其中有兩個(gè)區(qū)的單車亂停亂放數(shù)量超過(guò)標(biāo)準(zhǔn),在“大美上饒”活動(dòng)中,檢查組隨機(jī)抽取兩個(gè)區(qū)調(diào)查單車亂停亂放數(shù)量,
表示“單車亂停亂放數(shù)量超過(guò)標(biāo)準(zhǔn)的區(qū)的個(gè)數(shù)”,求
的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):回歸直線方程
中的斜率和截距的最小二乘估計(jì)分別為
,
,
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一布袋中裝有
個(gè)小球,甲,乙兩個(gè)同學(xué)輪流且不放回的抓球,每次最少抓一個(gè)球,最多抓三個(gè)球,規(guī)定:由乙先抓,且誰(shuí)抓到最后一個(gè)球誰(shuí)贏,那么以下推斷中正確的是( )
A. 若
,則乙有必贏的策略B. 若
,則甲有必贏的策略
C. 若
,則甲有必贏的策略D. 若
,則乙有必贏的策略
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某小區(qū)抽取50戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,將用電量的數(shù)據(jù)繪制成頻率分布直方圖如下.
![]()
(1)求頻率分布直方圖中
的值并估計(jì)這50戶用戶的平均用電量;
(2)若將用電量在區(qū)間
內(nèi)的用戶記為
類用戶,標(biāo)記為低用電家庭,用電量在區(qū)間
內(nèi)的用戶記為
類用戶,標(biāo)記為高用電家庭,現(xiàn)對(duì)這兩類用戶進(jìn)行問(wèn)卷調(diào)查,讓其對(duì)供電服務(wù)進(jìn)行打分,打分情況見(jiàn)莖葉圖:
![]()
①?gòu)?/span>
類用戶中任意抽取3戶,求恰好有2戶打分超過(guò)85分的概率;
②若打分超過(guò)85分視為滿意,沒(méi)超過(guò)85分視為不滿意,請(qǐng)?zhí)顚懴旅媪新?lián)表,并根據(jù)列聯(lián)表判斷是否有
的把握認(rèn)為“滿意度與用電量高低有關(guān)”?
滿意 | 不滿意 | 合計(jì) | |
| |||
| |||
合計(jì) |
附表及公式:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程;
(2)若
與曲線
相切,且
與坐標(biāo)軸交于
兩點(diǎn),求以
為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的圖象如圖所示.
![]()
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若x∈[-
,0],求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(ax2+2x+3).
(1)若f(x)定義域?yàn)镽,求a的取值范圍;
(2)若f(1)=1,求f(x)的單調(diào)區(qū)間;
(3)是否存在實(shí)數(shù)a,使f(x)的最小值為0?若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)結(jié)論:
①命題“
,
”的否定是“
,
”;
②命題“若
,則
且
”的否定是“若
,則
”;
③命題“若
,則
或
”的否命題是“若
,則
或
”;
④若“
是假命題,
是真命題”,則命題
,
一真一假.
其中正確結(jié)論的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com