【題目】現(xiàn)有5名男司機(jī),4名女司機(jī),需選派5人運(yùn)貨到吳忠.
(1)如果派3名男司機(jī)、2名女司機(jī),共有多少種不同的選派方法?
(2)至少有兩名男司機(jī),共有多少種不同的選派方法?
【答案】(1)
;(2) 121.
【解析】試題分析:(1)可分步完成這件事情:第一步,選3名男司機(jī);第二步,選2名女司機(jī);(2)可分類完成這件事情:第一類,選2名男司機(jī)3名女司機(jī);第二類,選3名男司機(jī)2名女司機(jī);第三類,選4名男司機(jī)1名女司機(jī),第四類,選25名男司機(jī)0名女司.
試題解析:(1)可分步完成這件事情:第一步,選3名男司機(jī),有
種不同的選法;第二步,選2名女司機(jī),有
種不同的選法;利用分步乘法原理,共有
種不同的選法.
可分類完成這件事情:第一類,選2名男司機(jī)3名女司機(jī),有
種不同的選法;第二類,選3名男司機(jī)2名女司機(jī),有
種不同的選法;第三類,選4名男司機(jī)1名女司機(jī),有
種不同的選法;第四類,選5名男司機(jī)0名女司機(jī),有
種不同的選法;
利用分類加法與分步乘法原理,共有
種不同的選法..
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(﹣1,0),拋物線的頂點(diǎn)為點(diǎn)D,對(duì)稱軸與x軸交于點(diǎn)E,連結(jié)BD,則拋物線表達(dá)式:BD的長(zhǎng)為 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2ax+b , 且f(1)=
、f(2)=
.
(1)求a、b的值;
(2)判斷f(x)的奇偶性并證明;
(3)先判斷并證明函數(shù)f(x)在[0,+∞)上的單調(diào)性,然后求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,
,點(diǎn)
分別在邊
上,且
,
交
于點(diǎn)
.現(xiàn)將
沿
折起,使得平面
平面
,得到圖2.
(Ⅰ)在圖2中,求證:
;
(Ⅱ)若點(diǎn)
是線段
上的一動(dòng)點(diǎn),問點(diǎn)
在什么位置時(shí),二面角
的余弦值為
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的圖象在
處的切線方程;
(2)是否存在實(shí)數(shù)
,使得對(duì)任意的
,都有函數(shù)
的圖象在
的圖象的下方?若存在,求出最大的整數(shù)
的值;若不存在,請(qǐng)說明理由;
(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù),兩個(gè)函數(shù)相同的是( )
A.f(x)=
,g(x)=x
B.f(x)=log33x , g(x)= ![]()
C.f(x)=(
)2 , g(x)=|x|
D.f(x)=x,g(x)=x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足
,則{an}的前60項(xiàng)和為( )
A. 3690 B. 3660 C. 1845 D. 1830
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校選擇高一年級(jí)三個(gè)班進(jìn)行為期二年的教學(xué)改革試驗(yàn),為此需要為這三個(gè)班各購買某種設(shè)備1臺(tái).經(jīng)市場(chǎng)調(diào)研,該種設(shè)備有甲乙兩型產(chǎn)品,甲型價(jià)格是3000元/臺(tái),乙型價(jià)格是2000元/臺(tái),這兩型產(chǎn)品使用壽命都至少是一年,甲型產(chǎn)品使用壽命低于2年的概率是
,乙型產(chǎn)品使用壽命低于2年的概率是
.若某班設(shè)備在試驗(yàn)期內(nèi)使用壽命到期,則需要再購買乙型產(chǎn)品更換.
(1)若該校購買甲型2臺(tái),乙型1臺(tái),求試驗(yàn)期內(nèi)購買該種設(shè)備總費(fèi)用恰好是10000元的概率;
(2)該校有購買該種設(shè)備的兩種方案,
方案:購買甲型3臺(tái);
方案:購買甲型2臺(tái)乙型1臺(tái).若根據(jù)2年試驗(yàn)期內(nèi)購買該設(shè)備總費(fèi)用的期望值決定選擇哪種方案,你認(rèn)為該校應(yīng)該選擇哪種方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)
時(shí),證明:
;
(2)當(dāng)
時(shí),直線
和曲線
切于點(diǎn)
,求實(shí)數(shù)
的值;
(3)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com