【題目】(2015·四川)在三棱住ABC-A1B1C1中,∠BAC=90°,其正視圖和側(cè)視圖都是邊長為1的正方形,俯視圖是直角邊長為1的等腰直角三角形,設(shè)點(diǎn)M , N , P分別是AB , BC , B1C1的中點(diǎn),則三棱錐P-A1MN的體積是 。![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx﹣
cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個實數(shù)根,則實數(shù)ω的取值范圍為( )
A.(
,
]
B.(
,
]
C.(
,
]
D.(
,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】![]()
ABC中,D是BC上的點(diǎn),AD平分
BAC,
ABD面積是
ADC面積的2倍
(1)(I)求![]()
(2)(II)若AD=1,DC=
,求BD和AC的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標(biāo)I卷)選修4-1:幾何證明選講
如圖AB是⊙O直徑,AC是⊙O切線,BC交⊙O與點(diǎn)E.![]()
(1)若D為AC中點(diǎn),求證:DE是⊙O切線;
(2)若OA=
CE,求∠ACB的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱臺
上、下底面分別是邊長為3和6的正方形,
,且
底面
,點(diǎn)
,
分別在棱
,
上.
(1)若是
是
的中點(diǎn),證明:
;
(2若
//平面
,二面角
的余弦值為
,求四面體
的體積![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)已知A、B、C為△ABC的內(nèi)角,tanA、tanB是關(guān)于方程x2+
px-p+1=0(p∈R)兩個實根.
(1)求C的大小
(2)若AB=1,AC=
,求p的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)設(shè)數(shù)列{an}的前n項和Sn=2an-a1 , 且a1, a2+1, a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{
}的前n項和Tn , 求得|Tn-1|<
成立的n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)設(shè)fn(x)=x+x2+x...+xn-1, n
N, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,
)內(nèi)有且僅有一個零點(diǎn)(記為an), 且0<an-
<
(
)n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
.
(1)當(dāng)
時,解不等式
;
(2)若關(guān)于
的方程
的解集中恰有一個元素,求
的取值范圍;
(3)設(shè)
,若對任意
,函數(shù)
在區(qū)間
上的最大值與最小值的差不超過1,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com