【題目】已知函數f(x)=
x3-2x2+3x(x∈R)的圖象為曲線C.
(1)求過曲線C上任意一點切線斜率的取值范圍;
(2)若在曲線C上存在兩條相互垂直的切線,求其中一條切線與曲線C的切點的橫坐標的取值范圍.
【答案】(1)[-1,+∞);(2)(-∞,2-
]∪(1,3)∪[2+
,+∞).
【解析】試題分析:(1)先求導函數,然后根據導函數求出其取值范圍,從而可求出曲線C上任意一點處的切線的斜率的取值范圍;(2)根據(1)可知k與﹣
的取值范圍,從而可求出k的取值范圍,然后解不等式可求出曲線C的切點的橫坐標取值范圍.
解析:
(1)由題意得f′(x)=x2-4x+3,則f′(x)=(x-2)2-1≥-1,
即過曲線C上任意一點切線斜率的取值范圍是[-1,+∞).
(2)設曲線C的其中一條切線的斜率為k,則由(2)中條件并結合(1)中結論可知, ![]()
解得-1≤k<0或k≥1,故由-1≤x2-4x+3<0或x2-4x+3≥1,
得x∈(-∞,2-
]∪(1,3)∪[2+
,+∞)
科目:高中數學 來源: 題型:
【題目】數列{an}滿足an+1+(﹣1)nan=2n﹣1,則{an}的前60項和為( )
A. 3690 B. 3660 C. 1845 D. 1830
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數
的部分圖象如圖,M是圖象的一個最低點,圖象與x軸的一個交點的坐標為
,與y軸的交點坐標為
.
![]()
(1)求A,
,
的值;
(2)若關于x的方程
在
上有一解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著“中華好詩詞”節目的播出,掀起了全民誦讀傳統詩詞經典的熱潮.某社團為調查大學生對于“中華詩詞”的喜好,從甲、乙兩所大學各隨機抽取了40名學生,記錄他們每天學習“中華詩詞”的時間,并整理得到如下頻率分布直方圖:
![]()
根據學生每天學習“中華詩詞”的時間,可以將學生對于“中華詩詞”的喜好程度分為三個等級 :
![]()
(Ⅰ)從甲大學中隨機選出一名學生,試估計其“愛好”中華詩詞的概率;
(Ⅱ)從兩組“癡迷”的同學中隨機選出2人,記
為選出的兩人中甲大學的人數,求
的分布列和數學期望
;
(Ⅲ)試判斷選出的這兩組學生每天學習“中華詩詞”時間的平均值
與
的大小,及方差
與
的大小.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】節約資源和保護環境是中國的基本國策.某化工企業,積極響應國家要求,探索改良工藝,使排放的廢氣中含有的污染物數量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數量為
,首次改良后所排放的廢氣中含有的污染物數量為
.設改良工藝前所排放的廢氣中含有的污染物數量為
,首次改良工藝后所排放的廢氣中含有的污染物數量為
,則第n次改良后所排放的廢氣中的污染物數量
,可由函數模型
給出,其中n是指改良工藝的次數.
(1)試求改良后所排放的廢氣中含有的污染物數量的函數模型;
(2)依據國家環保要求,企業所排放的廢氣中含有的污染物數量不能超過
,試問至少進行多少次改良工藝后才能使得該企業所排放的廢氣中含有的污染物數量達標.
(參考數據:取
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
是偶函數
(1)求k的值;
(2)若函數
的圖象與直線
沒有交點,求b的取值范圍;
(3)設
,若函數
與
的圖象有且只有一個公共點,求實數
的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】企業需為員工繳納社會保險,繳費標準是根據職工本人上一年度月平均工資(單位:元)的
繳納,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
t | 1 | 2 | 3 | 4 | 5 |
y | 270 | 330 | 390 | 460 | 550 |
某企業員工甲在2014年至2018年各年中每月所撒納的養老保險數額y(單位:元)與年份序號t的統計如下表:
(1)求出t關于t的線性回歸方程
;
(2)試預測2019年該員工的月平均工資為多少元?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
(注:
,
,其中
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com