【題目】已知函數
,其中
是自然對數的底數.
(1)證明:當
時,
;
(2)設
為整數,函數
有兩個零點,求
的最小值.
【答案】(1)見解析;(2)1
【解析】試題分析:(1)要證明不等式成立,構造設
,求導,利用單調性即可證明,從而證明整個不等式組(2)結合(1)問結論得當
時無零點,當
時,利用導數求得其單調性當
時,
,
單調遞減,當
時,
,
單調遞增,然后求得
,從而得到兩個零點
解析:(1)證明:設
,則
,令
,得![]()
當
時,
,
單調遞減
當
時,
,
單調遞增
∴
,當且僅當
時取等號,∴ 對任意
,
∴當
時,
,∴當
時, ![]()
∴當
時,
(2)函數
的定義域為![]()
當
時,由(Ⅰ)知,
,故
無零點
當
時,
, ![]()
∵
,
,且
為
上的增函數
∴
有唯一的零點
,當
時,
,
單調遞減
當
時,
,
單調遞增
∴
的最小值為
由
為
的零點知,
,于是![]()
∴
的最小值
,由
知,
,即
又
, ![]()
∴
在
上有一個零點,在
上有一個零點
∴
有兩個零點,綜上所述,
的最小值為1.
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在
市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為
市使用共享單車情況與年齡有關?
(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;
(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式:
,其中
.
參考數據:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還
升,
升,
升,1斗為10升,則下列判斷正確的是( )
A.
,
,
依次成公比為2的等比數列,且![]()
B.
,
,
依次成公比為2的等比數列,且![]()
C.
,
,
依次成公比為
的等比數列,且![]()
D.
,
,
依次成公比為
的等比數列,且![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某石化集團獲得了某地深海油田區塊的開采權,集團在該地區隨機初步勘探了部分幾口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節約勘探費用,勘探初期數據資料見如表:
![]()
(參考公式和計算結果:
,
,
,
)
(1)1~6號舊井位置線性分布,借助前5組數據求得回歸直線方程為
,求
的值,并估計
的預報值.
(2)現準備勘探新井
,若通過1,3,5,7號并計算出的
,
的值(
,
精確到0.01)相比于(1)中的
,
,值之差不超過10%,則使用位置最接近的已有舊井
,否則在新位置打開,請判斷可否使用舊井?
(3)設出油量與勘探深度的比值
不低于20的勘探井稱為優質井,那么在原有6口井中任意勘探4口井,求勘探優質井數
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明設置的手機開機密碼若連續3次輸入錯誤,則手機被鎖定,5分鐘后,方可重新輸入.
某日,小明忘記了開機密碼,但可以確定正確的密碼是他常用的4個密碼之一,于是,他
決定逐個(不重復)進行嘗試.
(1)求手機被鎖定的概率;
(2)設第
次輸入后能成功開機,求
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
是雙曲線
的左右焦點,以
為直徑的圓與雙曲線的一條漸近線交于點
,與雙曲線交于點
,且
均在第一象限,當直線
時,雙曲線的離心率為
,若函數
,則
()
A. 1 B.
C. 2 D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分條件,求實數m的取值范圍;
(2)若
是
成立的充分不必要條件,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右焦點為
,過
且與
軸垂直的弦長為3.
(1)求橢圓
的標準方程;
(2)過
作直線
與橢圓交于
兩點,問:在
軸上是否存在點
,使
為定值,若存在,請求出
點坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com