已知橢圓
的離心率為
,以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓
的方程;
(2)設(shè)
,過點(diǎn)
作與
軸不重合的直線
交橢圓于
、
兩點(diǎn),連結(jié)
、
分別交直線
于
、
兩點(diǎn).試問直線
、
的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.
(1)
;(2)詳見解析.
解析試題分析:(1)由直線和圓相切,求
,再由離心率
,得
,從而求
,進(jìn)而求橢圓
的方程;(2)要說明直線
、
的斜率之積是否為定值,關(guān)鍵是確定
、
兩點(diǎn)的坐標(biāo).首先設(shè)直線
的方程,并與橢圓聯(lián)立,設(shè)
,利用三點(diǎn)共線確定
、
兩點(diǎn)的坐標(biāo)的坐標(biāo),再計算直線
、
的斜率之積,這時會涉及到
,結(jié)合根與系數(shù)的關(guān)系,研究其值是否為定值即可.
試題解析:(1)![]()
,故
4分
(2)設(shè)
,若直線
與縱軸垂直, ![]()
則
中有一點(diǎn)與
重合,與題意不符,
故可設(shè)直線
. 5分
將其與橢圓方程聯(lián)立,消去
得:
6分
7分
由
三點(diǎn)共線可知,
,
, 8分
同理可得
9分
10分
而
11分
所以![]()
故直線
、
的斜率為定值
. 13分
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì);2、直線和橢圓的位置關(guān)系.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
是拋物線
上不同的兩點(diǎn),點(diǎn)
在拋物線
的準(zhǔn)線
上,且焦點(diǎn)
到直線
的距離為
.
(I)求拋物線
的方程;
(2)現(xiàn)給出以下三個論斷:①直線
過焦點(diǎn)
;②直線
過原點(diǎn)
;③直線
平行
軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的兩個焦點(diǎn)分別為
,且點(diǎn)
在橢圓C上,又
.
(1)求焦點(diǎn)F2的軌跡
的方程;
(2)若直線
與曲線
交于M、N兩點(diǎn),以MN為直徑的圓經(jīng)過原點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
:
和
:![]()
的焦點(diǎn)分別為
,
交于
兩點(diǎn)(
為坐標(biāo)原點(diǎn)),且![]()
.
(1)求拋物線
的方程;
(2)過點(diǎn)
的直線交
的下半部分于點(diǎn)
,交
的左半部分于點(diǎn)
,點(diǎn)
坐標(biāo)為
,求△
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心在原點(diǎn),離心率為2,一個焦點(diǎn)為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若
= 2
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的右焦點(diǎn)![]()
,長軸的左、右端點(diǎn)分別為
,且
.
(1)求橢圓
的方程;
(2)過焦點(diǎn)
斜率為
(
)的直線
交橢圓
于
兩點(diǎn),弦
的垂直平分線與
軸相交于
點(diǎn). 試問橢圓
上是否存在點(diǎn)
使得四邊形
為菱形?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的準(zhǔn)線與x軸交于點(diǎn)M,過點(diǎn)M作圓
的兩條切線,切點(diǎn)為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點(diǎn)N作圓C的兩條切線,切點(diǎn)分別為P、Q,若P,Q,O(O為原點(diǎn))三點(diǎn)共線,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點(diǎn)![]()
與分別在
軸、
軸上的動點(diǎn)
滿足:
,動點(diǎn)
滿足
.
(1)求動點(diǎn)
的軌跡的方程;
(2)設(shè)過點(diǎn)
任作一直線與點(diǎn)
的軌跡交于
兩點(diǎn),直線
與直線
分別交于點(diǎn)
(
為坐標(biāo)原點(diǎn));
(i)試判斷直線
與以
為直徑的圓的位置關(guān)系;
(ii)探究
是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
經(jīng)過點(diǎn)
,其左、右頂點(diǎn)分別是
、
,左、右焦點(diǎn)分別是
、
,
(異于
、
)是橢圓上的動點(diǎn),連接
交直線
于
、
兩點(diǎn),若
成等比數(shù)列.![]()
(1)求此橢圓的離心率;
(2)求證:以線段
為直徑的圓過點(diǎn)
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com