【題目】已知集合
.
(1)若
,求
的概率;
(2)若
,求
的概率.
科目:高中數學 來源: 題型:
【題目】設f(x)與g(x)是定義在同一區間[a,b]上的兩個函數,若函數y=f(x)﹣g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關聯函數”,區間[a,b]稱為“關聯區間”.若f(x)=x2﹣3x+4與g(x)=2x+m在[0,3]上是“關聯函數”,則m的取值范圍 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣mx+m,m∈R.
(1)已知函數f(x)在點(l,f(1))處與x軸相切,求實數m的值;
(2)求函數f(x)的單調區間;
(3)在(1)的結論下,對于任意的0<a<b,證明:
<
﹣1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=
AD=1,CD=
. ![]()
(1)求證:平面PQB⊥平面PAD;
(2)若M為棱PC的中點,求異面直線AP與BM所成角的余弦值;
(3)若二面角M﹣BQ﹣C大小為30°,求QM的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,
.
![]()
(1)證明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0且滿足不等式22a+1>25a﹣2.
(1)求實數a的取值范圍;
(2)求不等式loga(3x+1)<loga(7﹣5x);
(3)若函數y=loga(2x﹣1)在區間[1,3]有最小值為﹣2,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學利用周末組織教職員工進行了一次秋季登山健身的活動,有N人參加,現將所有參加者按年齡情況分為[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七組,其頻率分布直方圖如下所示.已知[35,40)這組的參加者是8人. ![]()
(1)求N和[30,35)這組的參加者人數N1;
(2)已知[30,35)和[35,40)這兩組各有2名數學教師,現從這兩個組中各選取2人擔任接待工作,設兩組的選擇互不影響,求兩組選出的人中都至少有1名數學老師的概率;
(3)組織者從[45,55)這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔任后勤保障工作,其中女教師的人數為x,求x的分布列和均值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com