【題目】某工廠加工某種零件需要經(jīng)過
,
,
三道工序,且每道工序的加工都相互獨立,三道工序加工合格的概率分別為
,
,
.三道工序都合格的零件為一級品;恰有兩道工序合格的零件為二級品;其它均為廢品,且加工一個零件為二級品的概率為
.
(1)求
;
(2)若該零件的一級品每個可獲利200元,二級品每個可獲利100元,每個廢品將使工廠損失50元,設一個零件經(jīng)過三道工序加工后最終獲利為
元,求
的分布列及數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學的發(fā)展做出了很大貢獻.在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
![]()
表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
![]()
如果把5根算籌以適當?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )
![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年5月,重慶市育才中學開展了“最美教室”文化布置評比活動,工作人員隨機抽取了16間教室進行量化評估,其中評分不低于9分的教室評為優(yōu)秀,以下表格記錄了它們的評分情況:
分數(shù)段 |
|
|
|
|
教室間數(shù) | 1 | 3 | 8 | 4 |
(1)現(xiàn)從16間教室隨機抽取3個,求至多有1個優(yōu)秀的概率;
(2)以這16間教室評分數(shù)據(jù)估計全校教室的布置情況,若從全校所有教室中任選3個,記
表示抽到優(yōu)秀的教室個數(shù),求
的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左焦點為
,直線
與圓
交于
,
兩點.
![]()
(1)若直線
過點
,且
,求
被橢圓
所截得的弦的長度;
(2)若已知點
在橢圓
上,動點
滿足
,請判斷點
與圓
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
的左、右頂點分別為C、D,且過點
,P是橢圓上異于C、D的任意一點,直線PC,PD的斜率之積為
.
(1)求橢圓
的方程;
(2)O為坐標原點,設直線CP交定直線x = m于點M,當m為何值時,
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線
與拋物線
:
交于
,
兩點,且
的面積為16(
為坐標原點).
(1)求
的方程;
(2)直線
經(jīng)過
的焦點
且
不與
軸垂直,與
交于
,
兩點,若線段
的垂直平分線與
軸交于點
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(
,
為自然對數(shù)的底數(shù),
).
(1)討論函數(shù)
的單調(diào)性;
(2)當
時,求使得
恒成立的最小整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當
時,求函數(shù)
的單調(diào)區(qū)間及極值;
(2)討論函數(shù)
的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標原點為極點,
軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線
的極坐標方程為
.
(1)求直線
的普通方程和曲線
的直角坐標方程;
(2)設
是曲線
上任意一點,直線
與兩坐標軸的交點分別為
,求
最大值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com