【題目】函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為( ) ![]()
A.(kπ﹣
,kπ+
,),k∈z
B.(2kπ﹣
,2kπ+
),k∈z
C.(k﹣
,k+
),k∈z
D.(
,2k+
),k∈z
【答案】D
【解析】解:由函數(shù)f(x)=cos(ωx+)的部分圖象,可得函數(shù)的周期為
=2(
﹣
)=2,∴ω=π,f(x)=cos(πx+). 再根據(jù)函數(shù)的圖象以及五點(diǎn)法作圖,可得
+=
,k∈z,即=
,f(x)=cos(πx+
).
由2kπ≤πx+
≤2kπ+π,求得 2k﹣
≤x≤2k+
,故f(x)的單調(diào)遞減區(qū)間為(
,2k+
),k∈z,
故選:D.
由周期求出ω,由五點(diǎn)法作圖求出φ,可得f(x)的解析式,再根據(jù)余弦函數(shù)的單調(diào)性,求得f(x)的減區(qū)間.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)已知直線l經(jīng)過點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)已知直線l經(jīng)過點(diǎn)P(3,4),且直線l的傾斜角為θ(θ≠90°),若直線l經(jīng)過另外一點(diǎn)(cosθ,sinθ),求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2+2x﹣3>0},集合B={x|x2﹣2ax﹣1≤0,a>0}.若A∩B中恰含有一個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},
若(UA)∩B=,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求
在區(qū)間
的最值;
(2)求實(shí)數(shù)
的取值范圍,使
在區(qū)間
上是單調(diào)函數(shù);
(3)當(dāng)
時(shí),求
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(0)=﹣1,對(duì)任意x∈R都有f(x)≥x﹣1,且f(﹣
+x)=f(﹣
﹣x).
(1)求函數(shù)f(x)的解析式;
(2)是否存在實(shí)數(shù)a,使函數(shù)g(x)=log
[f(a)]x在(﹣∞,+∞)上為減函數(shù)?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線系M:xcosθ+(y﹣1)sinθ=1(0≤θ≤2π),對(duì)于下列說法:
(1)M中所有直線均經(jīng)過一個(gè)定點(diǎn);
(2)存在一個(gè)圓與所有直線不相交;
(3)對(duì)于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上;
(4)M中的直線所能圍成的正三角形面積都相等.
其中說法正確的是(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了測(cè)量山頂M的海拔高度,飛機(jī)沿水平方向在A,B兩點(diǎn)進(jìn)行測(cè)量,A,B,M在同一個(gè)鉛垂面內(nèi)(如圖).能夠測(cè)量的數(shù)據(jù)有俯角、飛機(jī)的高度和A,B兩點(diǎn)間的距離.請(qǐng)你設(shè)計(jì)一個(gè)方案,包括: ![]()
(1)指出需要測(cè)量的數(shù)據(jù)(用字母表示,并在圖中標(biāo)出);
(2)用文字和公式寫出計(jì)算山頂M海拔高度的步驟.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com