【題目】已知a∈R,函數f(x)=(﹣x2+ax)ex(x∈R,e為自然對數的底數).
(1)當a=2時,求函數f(x)的單調遞增區間;
(2)若函數f(x)在(﹣1,1)上單調遞增,求a的取值范圍.
【答案】
(1)解:當a=2時,f(x)=(﹣x2+2x)ex,f′(x)=﹣(x2﹣2)ex
令f′(x)>0,得x2﹣2<0,∴﹣
<x< ![]()
∴f(x)的單調遞增區間是(﹣
,
);
(2)解:f′(x)=[﹣x2+(a﹣2)x+a]ex,若f(x)在(﹣1,1)內單調遞增,即當﹣1<x<1時,f′(x)≥0,
即﹣x2+(a﹣2)x+a≥0對x∈(﹣1,1)恒成立,
即a≥
對x∈(﹣1,1)恒成立,
令y=
,則y′= ![]()
∴y=
在(﹣1,1)上單調遞增,∴y<1+1﹣
= ![]()
∴ ![]()
當a=
時,當且僅當x=0時,f′(x)=0
∴a的取值范圍是[
,+∞).
【解析】(1)求導函數,令f′(x)>0,可得f(x)的單調遞增區間;(2)f′(x)=[﹣x2+(a﹣2)x+a]ex , 若f(x)在(﹣1,1)內單調遞增,即當﹣1<x<1時,f′(x)≥0,即﹣x2+(a﹣2)x+a≥0對x∈(﹣1,1)恒成立,分離參數求最值,即可求a的取值范圍.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=
x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數f(x)的單調區間;
(2)當m≥1時,討論函數f(x)與g(x)圖象的交點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的離心率為
,若圓x2+y2=a2被直線x﹣y﹣
=0截得的弦長為2
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點A、B為動直線y=k(x﹣1),k≠0與橢圓C的兩個交點,問:在x軸上是否存在定點M,使得
為定值?若存在,試求出點M的坐標和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an}中,設ai=2m(i∈N* , 3m﹣2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12 , 則滿足Si∈[1000,3000]的i的值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用a代表紅球,b代表藍球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”表示把紅球和藍球都取出來,以此類推,下列各式中,其展開式可用來表示從3個無區別的紅球、3個無區別的藍球、2個有區別的黑球中取出若干個球,且所有藍球都取出或都不取出的所有取法的是
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2)
④(1+a3)(1+b)3(1+c+c2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓M:
的左頂點為
、中心為
,若橢圓M過點
,且
.
(1)求橢圓M的方程;
(2)若△APQ的頂點Q也在橢圓M上,試求△APQ面積的最大值;
(3)過點
作兩條斜率分別為
的直線交橢圓M于
兩點,且
,求證:直線
恒過一個定點.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側面
底面
,
,
,
分別為
的中點,點
在線段
上.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)如果直線
與平面
所成的角和直線
與平面
所成的角相等,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com