【題目】設整數數列{an}共有2n(
)項,滿足
,
,且
(
).
(1)當
時,寫出滿足條件的數列的個數;
(2)當
時,求滿足條件的數列的個數.
【答案】(1)8;(2)
.
【解析】
(1)當
確定時,可確定
,再逆推可知
有
種取法;再依據
可知
各有
種取法;由于
與
有關,當
確定時,
必然隨之確定,故根據分步乘法計數原理,可得數列個數為
;(2)設
,且
,可推得:
;又
,可推得:
;用
表示
中值為
的項數可知
的取法數為
,再任意指定
的值,有
種,可知數列有
個;再化簡
,可得最終結果.
(1)
時,
,
且![]()
則
確定時,
有唯一確定解
又
,可知
有
種取法
若
,則
,則
有
種取法
此時
,也有
種取法
又
,當
確定時,
隨之確定
故所有滿足條件的數列共有:
個
滿足條件的所有的數列的個數為![]()
(2)設
,則由
得
①
由
得
,則:
即
②
用
表示
中值為
的項數
由②可知
也是
中值為
的項數,其中![]()
所以
的取法數為![]()
確定
后,任意指定
的值,有
種
由①式可知,應取
,使得
為偶數
這樣的
的取法是唯一的,且確定了
的值
從而數列
唯一地對應著一個滿足條件的![]()
所以滿足條件的數列共有
個
下面化簡![]()
設![]()
![]()
兩展開式右邊乘積中的常數項恰好為![]()
因為
,又
中
的系數為![]()
所以![]()
所以滿足條件的數列共有
個
科目:高中數學 來源: 題型:
【題目】己知數列
,首項
,設該數列的前
項的和為
,且![]()
(1)求數列
的通項公式;
(2)若數列
滿足
,求數列
的通項公式;
(3)在第(2)小題的條件下,令
,
是數列
的前
項和,若對
,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還
升,
升,
升,1斗為10升,則下列判斷正確的是( )
A.
,
,
依次成公比為2的等比數列,且![]()
B.
,
,
依次成公比為2的等比數列,且![]()
C.
,
,
依次成公比為
的等比數列,且![]()
D.
,
,
依次成公比為
的等比數列,且![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學生參加社會實踐活動,對某公司1月份至6月份銷售某種配件的銷售量及銷售單價進行了調查,銷售單價x和銷售量y之間的一組數據如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根據1至5月份的數據,求出y關于x的回歸直線方程;
(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程
,其中
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關于圓的距離比
.
(1)設圓
求過
(2,0)的直線關于圓
的距離比
的直線方程;
(2)若圓
與
軸相切于點
(0,3)且直線
=
關于圓
的距離比
,求此圓的
的方程;
(3)是否存在點
,使過
的任意兩條互相垂直的直線分別關于相應兩圓
的距離比始終相等?若存在,求出相應的點
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,
垂直于梯形
所在的平面,
為
的中點,
,四邊形
為矩形,線段
交
于點
.
![]()
(1)求證:
平面
;
(2)求二面角
的正弦值;
(3)在線段
上是否存在一點
,使得
與平面
所成角的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位為促進職工業務技能提升,對該單位120名職工進行一次業務技能測試,測試項目共5項.現從中隨機抽取了10名職工的測試結果,將它們編號后得到它們的統計結果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).
表1:
編號\測試項目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規定:每項測試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項的項數的頻率代替每名職工合格項的項數的概率.
①設抽取的這10名職工中,每名職工測試合格的項數為
,根據上面的測試結果統計表,列出
的分布列,并估計這120名職工的平均得分;
②假設各名職工的各項測試結果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測試中,測試難度的計算公式為
,其中
為第
項測試難度,
為第
項合格的人數,
為參加測試的總人數.已知抽取的這10名職工每項測試合格人數及相應的實測難度如下表(表2):
表2:
測試項目 | 1 | 2 | 3 | 4 | 5 |
實測合格人數 | 8 | 8 | 7 | 7 | 2 |
定義統計量
,其中
為第
項的實測難度,
為第
項的預測難度(
).規定:若
,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:
表3:
測試項目 | 1 | 2 | 3 | 4 | 5 |
預測前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測試的難度預估是否合理.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com