【題目】為評估設(shè)備
生產(chǎn)某種零件的性能,從設(shè)備
生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值
,標(biāo)準(zhǔn)差
,以頻率值作為概率的估計(jì)值.
(Ⅰ)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為
,并根據(jù)以下不等式進(jìn)行評判(
表示相應(yīng)事件的概率);①
;
②
;③
.
評判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級為甲;僅滿足其中兩個(gè),則等級為乙;若僅滿足其中一個(gè),則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備
的性能等級.
(2)將直徑小于等于
或直徑大于
的零件認(rèn)為是次品.
(ⅰ)從設(shè)備
的生產(chǎn)流水線上隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)
的數(shù)學(xué)期望
;
(ⅱ)從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)
的數(shù)學(xué)期望
.
【答案】(1)丙;(2)(ⅰ)
;(ⅱ)
.
【解析】
試題分析:(1)利用條件,可得設(shè)備
的數(shù)據(jù)僅滿足一個(gè)不等式,即可得出結(jié)論;(2)首先求得樣本中次品數(shù),(ⅰ)由題意可知
,然后用數(shù)學(xué)期望公式求解即可;(ⅱ)首先確定
的取值,然后分別求出相應(yīng)的概率,由可求出其中次品個(gè)數(shù)
的數(shù)學(xué)期望
.
試題解析:(1)由題意知道:
,
所以由圖表知道:![]()
![]()
![]()
所以該設(shè)備
的性能為丙級別.
(2)由圖表知道:直徑小于或等于
的零件有2件,大于
的零件有4件共計(jì)6件
(i)從設(shè)備
的生產(chǎn)流水線上任取一件,取到次品的概率為
,
依題意
,故
.
(ii)從100件樣品中任意抽取2件,次品數(shù)
的可能取值為0,1,2
![]()
故
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),在以原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和直線
的傾斜角;
(2)設(shè)點(diǎn)
,直線
和曲線
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,
底面
,
為直角梯形,
與
相交于點(diǎn)
,
,
,
,三棱錐
的體積為9.
![]()
(1)求
的值;
(2)過
點(diǎn)的平面
平行于平面
,
與棱
,
,
,
分別相交于點(diǎn)
,求截面
的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系
中,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)
的坐標(biāo)為
,直線
與曲線
交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(其中
為常數(shù)且
)在
處取得極值.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)若
在
上的最大值為1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點(diǎn)為
,原點(diǎn)為
,橢圓
的動弦
過焦點(diǎn)
且不垂直于坐標(biāo)軸,弦
的中點(diǎn)為
,過
且垂直于線段
的直線交射線
于點(diǎn)
.
(1)證明:點(diǎn)
在定直線上;
(2)當(dāng)
最大時(shí),求
的面積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老師對全班
名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:
參加社團(tuán)活動 | 不參加社團(tuán)活動 | 合計(jì) | |
學(xué)習(xí)積極性高 |
| ||
學(xué)習(xí)積極性一般 |
| ||
合計(jì) |
|
|
(1)請把表格數(shù)據(jù)補(bǔ)充完整;
(2)若從不參加社團(tuán)活動的
人按照分層抽樣的方法選取
人,再從所選出的
人中隨機(jī)選取兩人作為代表發(fā)言,求至少有一個(gè)學(xué)習(xí)積極性高的概率;
(3)運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:請你判斷是否有
的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動由關(guān)系?
附: ![]()
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在原點(diǎn),離心率為
,右焦點(diǎn)到直線
的距離為2.
(1)求橢圓
的方程;
(2)橢圓下頂點(diǎn)為
,直線
(
)與橢圓相交于不同的兩點(diǎn)
,當(dāng)
時(shí),求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com