【題目】在直角坐標(biāo)系
中,圓
,圓
.
(Ⅰ)在以
為極點,
軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓
的極坐標(biāo)方程,并求出圓
的交點坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求出
與
的公共弦的參數(shù)方程.
【答案】解:(Ⅰ)由
,
,
得圓
的極坐標(biāo)方程為
,
圓
,即
的極坐標(biāo)方程為
,
解
,得:
,
,
故圓
的交點坐標(biāo)為
,
.
(Ⅱ)由
,得圓
的交點的直角坐標(biāo)
,
,
故
的公共弦的參數(shù)方程為
,
.
【解析】(1)根據(jù)題意利用極坐標(biāo)和直角坐標(biāo)的互化關(guān)系即可求出圓 C1 的極坐標(biāo)方程為 ρ = 2,同理即可求出C2的極坐標(biāo)方程聯(lián)立兩式即可求出兩個圓的交點坐標(biāo)。(2)根據(jù)題意求出兩圓的交點坐標(biāo)進(jìn)而可求出兩圓的公共弦的參數(shù)方程,進(jìn)而求出t的取值范圍。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
為常數(shù))與
軸有唯一的公關(guān)點
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)曲線
在點
處的切線斜率為
,若存在不相等的正實數(shù)
,滿足
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(某保險公司有一款保險產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費收入)的頻率分布直方圖如圖所示:![]()
(Ⅰ)試估計平均收益率;
(Ⅱ)根據(jù)經(jīng)驗若每份保單的保費在
元的基礎(chǔ)上每增加
元,對應(yīng)的銷量
(萬份)與
(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下
組
與
的對應(yīng)數(shù)據(jù):
|
|
|
|
|
|
銷量 |
|
|
|
|
|
(ⅰ)根據(jù)數(shù)據(jù)計算出銷量
(萬份)與
(元)的回歸方程為
;
(ⅱ)若把回歸方程
當(dāng)作
與
的線性關(guān)系,用(Ⅰ)中求出的平均獲益率估計此產(chǎn)品的獲益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時,
f(x)=
.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】博鰲亞洲論壇2015年會員大會于3月27日在海南博鰲舉辦,大會組織者對招募的100名服務(wù)志愿者培訓(xùn)后,組織一次
知識競賽,將所得成績制成如右頻率分布直方圖(假定每個分?jǐn)?shù)段內(nèi)的成績均勻分布),組織者計劃對成績前20名的參賽者進(jìn)行獎勵.![]()
(1)試確定受獎勵的分?jǐn)?shù)線;
(2)從受獎勵的20人中利用分層抽樣抽取5人,再從抽取的5人中抽取2人在主會場服務(wù),試求2人成績都在90分以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
的定義域為
,若函數(shù)
滿足下列兩個條件,則稱
在定義域
上是閉函數(shù).①
在
上是單調(diào)函數(shù);②存在區(qū)間
,使
在
上值域為
.如果函數(shù)
為閉函數(shù),則
的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
(
),若
,且
的圖象上兩相鄰對稱軸間的距離為
.
(Ⅰ)求
的單調(diào)遞減區(qū)間;
(Ⅱ)設(shè)
的內(nèi)角
,
,
的對邊分別為
,
,
,且滿足
,
,
,求
,
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐
中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com