【題目】正方體
的棱長為
,
分別是
的中點,則過
且與
平行的平面截正方體所得截面的面積為____________
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)的離心率為
,且短軸長為6.
(1)求橢圓的標準方程;
(2)是否存在斜率為1的直線l,使得l與曲線C相交于A,B兩點,且以AB為直徑的圓恰好經過原點?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓具有以下性質:設A,B是圓C:
上關于原點對稱的兩點,點P是圓上的任意一點.若直線PA,PB的斜率都存在并分別記為
,
,則
=﹣1,是與點P的位置無關的定值.
(1)試類比圓的上述性質,寫出橢圓
的一個類似性質,并加以證明;
(2)如圖,若橢圓M的標準方程為
,點P在橢圓M上且位于第一象限,點A,B分別為橢圓長軸的兩個端點,過點A,B分別作
⊥PA,
⊥PB,直線
,
交于點C,直線
與橢圓M的另一交點為Q,且
,求
的取值范圍(可直接使用(1)中證明的結論).
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在打擊拐賣兒童犯罪的活動中,警方救獲一名男孩,為了確定他的家鄉,警方進行了調查:
知情人士A說,他可能是四川人,也可能是貴州人;
知情人士B說,他不可能是四川人;
知情人士C說,他肯定是四川人;
知情人士D說,他不是貴州人.
警方確定,只有一個人的話不可信.根據以上信息,警方可以確定這名男孩的家鄉是( )
A.四川B.貴州
C.可能是四川,也可能是貴州D.無法判斷
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數圖象的有下列說法:
①若函數
滿足
,則
的一個周期為
;
②若函數
滿足
,則
的圖象關于直線
對稱;
③函數
與函數
的圖象關于直線
對稱;
④若函數
與函數
的圖象關于原點對稱,則
,
其中正確的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務,已知這200位銷售員去年完成銷售額都在區間
(單位:百萬元)內,現將其分成5組,第1組,第2組,第3組,第4組,第5組對應的區間分別為
,
,
,
,
,繪制出頻率分布直方圖.
![]()
(1)求
的值,并計算完成年度任務的人數;
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應抽取的人數;
(3)現從(2)中完成年度任務的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫藥開發公司實驗室有
瓶溶液,其中
瓶中有細菌
,現需要把含有細菌
的溶液檢驗出來,有如下兩種方案:
方案一:逐瓶檢驗,則需檢驗
次;
方案二:混合檢驗,將
瓶溶液分別取樣,混合在一起檢驗,若檢驗結果不含有細菌
,則
瓶溶液全部不含有細菌
;若檢驗結果含有細菌
,就要對這
瓶溶液再逐瓶檢驗,此時檢驗次數總共為
.
(1)假設
,采用方案一,求恰好檢驗3次就能確定哪兩瓶溶液含有細菌
的概率;
(2)現對
瓶溶液進行檢驗,已知每瓶溶液含有細菌
的概率均為
.
若采用方案一.需檢驗的總次數為
,若采用方案二.需檢驗的總次數為
.
(i)若
與
的期望相等.試求
關于
的函數解析式
;
(ii)若
,且采用方案二總次數的期望小于采用方案一總次數的期望.求
的最大值.
參考數據:![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱臺被過點
的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形
是邊長為2的菱形,
,
平面
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
與底面
所成角的正切值為2,求二面角
的余弦值.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com