科目: 來源: 題型:
【題目】已知橢圓E的長(zhǎng)軸長(zhǎng)與焦距比為2:1,左焦點(diǎn)F(﹣2,0),一定點(diǎn)為P(﹣8,0).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過P的直線與橢圓交于P1、P2兩點(diǎn),設(shè)直線P1F、P2F的斜率分別為k1、k2,求證:k1+k2=0.
(3)求△P1P2F面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+|x﹣a|.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)試討論函數(shù)f(x)的奇偶性,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為整數(shù),其前n項(xiàng)和為Sn.規(guī)定:若數(shù)列{an}滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第r﹣1項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列{an}為“6關(guān)聯(lián)數(shù)列”,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,求出Sn,并證明:對(duì)任意n∈N*,anSn≥a6S6;
(3)已知數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”,且a1=﹣10,是否存在正整數(shù)k,m(m>k),使得a1+a2+…+ak﹣1+ak=a1+a2+…+am﹣1+am?若存在,求出所有的k,m值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的中心在坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn)
,它的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合.
(1)求橢圓
的方程;
(2)斜率為
的直線過點(diǎn)
,且與拋物線
交于
兩點(diǎn),設(shè)點(diǎn)
,
的面積為
,求
的值;
(3)若直線
過點(diǎn)![]()
,且與橢圓
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,直線
的縱截距為
,證明:
為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個(gè)公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)
圖象的一段,點(diǎn)M到l1、l2的距離分別為8千米和1千米,點(diǎn)N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy,設(shè)點(diǎn)P的橫坐標(biāo)為p.
![]()
(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;
(2)若某人從點(diǎn)O沿公路至點(diǎn)P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果實(shí)系數(shù)
、
、
和
、
、
都是非零常數(shù).
(1)設(shè)不等式
和
的解集分別是
、
,試問
是
的什么條件?并說明理由.
(2)在實(shí)數(shù)集中,方程
和
的解集分別為
和
,試問
是
的什么條件?并說明理由.
(3)在復(fù)數(shù)集中,方程
和
的解集分別為
和
,證明:
是
的充要條件.
查看答案和解析>>
科目: 來源: 題型:
【題目】某甲
籃球隊(duì)的12名隊(duì)員(含2名外援)中有5名主力隊(duì)員(含一名外援),主教練要從12名隊(duì)員中選5人首發(fā)上場(chǎng),則主力隊(duì)員不少于4人,且有一名外援上場(chǎng)的概率是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,
為坐標(biāo)原點(diǎn).
(1)求橢圓
的方程;
(2)設(shè)點(diǎn)
在橢圓
上,點(diǎn)
在直線
上,且
,求證:
為定值;
(3)設(shè)點(diǎn)
在橢圓
上運(yùn)動(dòng),
,且點(diǎn)
到直線
的距離為常數(shù)
,求動(dòng)點(diǎn)
的軌跡方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了配合今年上海迪斯尼游園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型
:以
表示第
個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù);以
表示第
個(gè)時(shí)刻離開園區(qū)的人數(shù).設(shè)定以
分鐘為一個(gè)計(jì)算單位,上午
點(diǎn)
分作為第
個(gè)計(jì)算人數(shù)單位,即
;
點(diǎn)
分作為第
個(gè)計(jì)算單位,即
;依次類推,把一天內(nèi)從上午
點(diǎn)到晚上
點(diǎn)
分分成
個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).
(1)試計(jì)算當(dāng)天
點(diǎn)至
點(diǎn)這一小時(shí)內(nèi),進(jìn)入園區(qū)的游客人數(shù)
、離開園區(qū)的游客人數(shù)
各為多少?
(2)假設(shè)當(dāng)日?qǐng)@區(qū)游客總?cè)藬?shù)達(dá)到或超過
萬時(shí),園區(qū)將采取限流措施.該單位借助該數(shù)學(xué)模型知曉當(dāng)天
點(diǎn)(即
)時(shí),園區(qū)總?cè)藬?shù)會(huì)達(dá)到最高,請(qǐng)問當(dāng)日是否要采取限流措施?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
,數(shù)列
、
滿足:
,
,記
.
(1)若
,
,求數(shù)列
、
的通項(xiàng)公式;
(2)證明:數(shù)列
是等差數(shù)列;
(3)定義
,證明:若存在
,使得
、
為整數(shù),且
有兩個(gè)整數(shù)零點(diǎn),則必有無窮多個(gè)
有兩個(gè)整數(shù)零點(diǎn).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com