科目: 來源: 題型:
【題目】《九章算術》是我國古代數學成就的杰出代表.其中《方田》章給出計算弧田面積的經驗公式為:
.弧田(如圖1陰影部分)由圓弧和其所對弦圍成,弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.類比弧田面積公式得到球缺(如圖 2)近似體積公式:
圓面積
矢
.球缺是指一個球被平面截下的一部分,廈門嘉庚體育館近似球缺結構(如圖3),若該體育館占地面積約為18000
,建筑容積約為340000
,估計體育館建筑高度(單位:
)所在區間為( )
參考數據:
,
,
,
,
.
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標系中,直線
的極坐標方程為![]()
.以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,曲線
的參數方程為
,(
為參數).
(1)請寫出直線
的參數方程;
(2)求直線
與曲線
交點
的直角坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年12月以來,湖北武漢市發現多起病毒性肺炎病例,并迅速在全國范圍內開始傳播,專家組認為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過與患者的密切接觸進行傳染.我們把與患者有過密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個患者后被感染的概率為
,某位患者在隔離之前,每天有
位密切接觸者,其中被感染的人數為
,假設每位密切接觸者不再接觸其他患者.
(1)求一天內被感染人數為
的概率
與
、
的關系式和
的數學期望;
(2)該病毒在進入人體后有14天的潛伏期,在這14天的潛伏期內患者無任何癥狀,為病毒傳播的最佳時間,設每位患者在被感染后的第二天又有
位密切接觸者,從某一名患者被感染,按第1天算起,第
天新增患者的數學期望記為
.
(i)求數列
的通項公式,并證明數列
為等比數列;
(ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率
,當
取最大值時,計算此時
所對應的
值和此時
對應的
值,根據計算結果說明戴口罩的必要性.(取
)
(結果保留整數,參考數據:
)
查看答案和解析>>
科目: 來源: 題型:
【題目】古希臘雅典學派算學家歐道克薩斯提出了“黃金分割”的理論,利用尺規作圖可畫出己知線段的黃金分割點,具體方法如下:(l)取線段AB=2,過點B作AB的垂線,并用圓規在垂線上截取BC=
AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點D;(3)以A為圓心,以AD為半徑畫弧,交AB于點E.則點E即為線段AB的黃金分割點.若在線段AB上隨機取一點F,則使得BE≤AF≤AE的概率約為( )(參考數據:
2.236)
![]()
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解高三學生的“理科綜合”成績是否與性別有關,某校課外學習興趣小組在本地區高三年級理科班中隨機抽取男、女學生各100名,然后對這200名學生在一次聯合模擬考試中的“理科綜合”成績進行統計規定:分數不小于240分為“優秀”小于240分為“非優秀”.
(1)根據題意,填寫下面的2×2列聯表,并根據列聯表判斷是否有90%以上的把握認為“理科綜合”成績是否優秀與性別有關.
性別 | 優秀 | 非優秀 | 總計 |
男生 | 35 | ||
女生 | 75 | ||
總計 |
(2)用分層抽樣的方法從成績優秀的學生中隨機抽取12名學生,然后再從這12名學生中抽取3名參加某高校舉辦的自主招生考試,設抽到的3名學生中女生的人數為X,求X的分布列及數學期望.
附:
,其中
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)=|2x﹣a|+|x﹣a+1|.
(1)當a=4時,求解不等式f(x)≥8;
(2)已知關于x的不等式f(x)
在R上恒成立,求參數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com