題目列表(包括答案和解析)
D
解析:由正弦定理得![]()
.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以![]()
![]()
D
解析:由正弦定理得![]()
.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以![]()
![]()
D
解析:由正弦定理得![]()
.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以![]()
![]()
已知在
中,
,
,
,解這個三角形;
【解析】本試題主要考查了正弦定理的運用。由正弦定理得到:![]()
,然后又
![]()
又
再又
得到c。
解:由正弦定理得到:![]()
![]()
又
……4分
又
……8分
又
![]()
已知
中,內角
的對邊的邊長分別為
,且![]()
(I)求角
的大;
(II)若
求
的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二問,![]()
三角函數的性質運用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,則當
,即
時,y的最小值為
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com