題目列表(包括答案和解析)
設點
為平面直角坐標系
中的一個動點(其中O為坐標原點),點P到定點
的距離比點P到
軸的距離大
。
(1)求點P的軌跡方程。
(2)若直線
與點P的軌跡相交于A、B兩點,且
,求
的值。
(3)設點P的軌跡是曲線C,點
是曲線C上的一點,求以Q為切點的曲線C 的切線方程。
【解析】本試題主要考查了軌跡方程的求解,利用直接法設點表示軌跡方程,并能利用所求的軌跡進行直線與圓錐曲線位置關系的運用。以及導數(shù)的幾何意義的運用的綜合試題。
設點
為平面直角坐標系
中的一個動點(其中O為坐標原點),點P到定點
的距離比點P到
軸的距離大
。
(1)求點P的軌跡方程。
(2)若直線
與點P的軌跡相交于A、B兩點,且
,求
的值。
(3)設點P的軌跡是曲線C,點
是曲線C上的一點,求以Q為切點的曲線C 的切線方程。
【解析】本試題主要考查了軌跡方程的求解,利用直接法設點表示軌跡方程,并能利用所求的軌跡進行直線與圓錐曲線位置關系的運用。以及導數(shù)的幾何意義的運用的綜合試題。
已知拋物線
,過M(a,0)且斜率為1的直線
與拋物線交于不同的兩點A、B,
。
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值。
分析:這是一道直線與圓錐曲線位置關系的問題,對于(1),可以設法得到關于a的不等式,通過解不等式求出a的范圍,即“求范圍,找不等式”。或者將a表示為另一個變量的函數(shù),利用求函數(shù)的值域求出a的范圍。對于(2)首先要把△NAB的面積表示為一個變量的函數(shù),然后再求它的最大值。
在平面直角坐標系
中,曲線
與坐標軸的交點都在圓
上.
(1)求圓
的方程;
(2)若圓
與直線
交于
、
兩點,且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關系的運用。
(1)曲線
與
軸的交點為(0,1),
與
軸的交點為(3+2
,0),(3-2
,0) 故可設
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因為圓
與直線
交于
、
兩點,且
。聯(lián)立方程組得到結論。
已知點
(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若
,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點
為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線
的方程是
,且以點
為圓心的圓
與直線
相切,
求圓
面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關系的運用。
中∵直線
與曲線
相切,且過點
,∴
,利用求根公式得到結論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線
的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數(shù)的性質(zhì)圓
面積的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直線
與曲線
相切,且過點
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,則
的斜率
,
∴直線
的方程為:
,又
,
∴
,即
. -----------------7分
∵點
到直線
的距離即為圓
的半徑,即
,--------------8分
故圓
的面積為
. --------------------9分
(Ⅲ)∵直線
的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴![]()
,
當且僅當
,即
,
時取等號.
故圓
面積的最小值
.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com