【題目】函數(shù)y=ax+b與y=bx+a的圖象在同一坐標系內(nèi)的大致位置正確的是( )
A.
B.![]()
C.
D.![]()
【答案】C
【解析】
根據(jù)a、b的符號進行判斷,兩函數(shù)圖象能共存于同一坐標系的即為正確答案.
解:分四種情況:
①當(dāng)a>0,b>0時,y=ax+b的圖象經(jīng)過第一、二、三象限,y=bx+a的圖象經(jīng)過第一、二、三象限,無選項符合;
②當(dāng)a>0,b<0時,y=ax+b的圖象經(jīng)過第一、三、四象限;y=bx+a的圖象經(jīng)過第一、二、四象限,C選項符合;
③當(dāng)a<0,b>0時,y=ax+b的圖象經(jīng)過第一、二、四象限;y=bx+a的圖象經(jīng)過第一、三、四象限,C選項符合;
④當(dāng)a<0,b<0時,y=ax+b的圖象經(jīng)過第二、三、四象限;y=bx+a的圖象經(jīng)過第二、三、四象限,無選項符合.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點O,點E是CD的中點,△DOE的周長為16,BD=12,則ABCD的周長為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
對于任意一個三位數(shù)正整數(shù)n,如果n的各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“陌生數(shù)”,將一個“陌生數(shù)”的三個數(shù)位上的數(shù)字交換順序,可以得到5個不同的新“陌生數(shù)”,把這6個陌生數(shù)的和與111的商記為M(n).例如n=123,可以得到132.213.231.312.321這5個新的“陌生數(shù)”,這6個“陌生數(shù)”的和為123+132+213+231+312+321=1332,因為
,所以M(123)=12.
(1)計算:M(125)和M(361)的值;
(2)設(shè)s和t都是“陌生數(shù)”,其中4和2分別是s的十位和個位上的數(shù)字,2和5分別是t的百位和個位上的數(shù)字,且t的十位上的數(shù)字比s的百位上的數(shù)字小2;規(guī)定:
.若
,則k的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD,
軸,點
的坐標為
,點
的坐標為
,點
是四邊形ABCD邊上的一個動點.
(1)若四邊形ABCD是菱形,求點
的坐標.
(2)如圖1,若
,點
在第四象限內(nèi)
①若點
在邊
,
上,點
關(guān)于坐標軸對稱的點
落在直線
上,求點
的坐標.
②若點
在邊
,
,
上,點
是
與
軸的交點,如圖2,過點
作
軸的平行線
,過點
作
軸的平行線
,它們相交于點
,將
沿直線
翻折,當(dāng)點
的對應(yīng)點落在坐標軸上時,求點
的坐標.(直接寫出答案)
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知點C是線段BD上一點,以BC、 DC為一邊在BD的同一側(cè)作等邊△ABC和等邊△ECD,連接AD, BE相交于點F, AC和BE交于點M, AD, CE交于點N,(注:等邊三角形的每一個內(nèi)角都等于60° )
(1) 求證: AD=BE
(2) 線段CM與CN相等嗎?請證明你的結(jié)論。
(3) 求∠BFD的度數(shù)。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中結(jié)論正確的個數(shù)是( ) ![]()
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形
中,
,點
分別從點
同時出發(fā),點
以
的速度由點
向點
運動,點
以
的速度由點
向點
運動設(shè)運動時間為
.當(dāng)
__________.時,
為平行四邊形的一邊.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,
和
都是等邊三角形
![]()
(1)求證:四邊形
是菱形
(2)給
方向?qū)?/span>
平移到
的位置如圖2,此時,四邊形
(如圖3)是平行四邊形嗎?
(3)若按(2)題的方式繼續(xù)平移
到
,當(dāng)在什么位置時,四邊形
是矩形,請畫出
的位置(如圖4),并證明你的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=6,E為直線AB上一點,EF⊥AB交對角線AC于F,點G為AF中點,連接CE,點M為CE中點,連接BM并延長交直線AC于點O.
(1)如圖1,E在邊AB上時,
= ,∠GBM= ;
(2)將(1)中△AEF繞A逆時針旋轉(zhuǎn)任意一銳角,其他條件不變,如圖2,(1)中結(jié)論是否任然成立?請加以證明.
(3)若BE=2,則CO長為 .
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com