【題目】如圖,矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)A出發(fā),以每秒一個單位的速度沿A→B→C的方向運(yùn)動;同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位的速度沿B→C→D的方向運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后兩點(diǎn)都停止運(yùn)動.設(shè)兩點(diǎn)運(yùn)動的時間為t秒.
(1)當(dāng)t= 時,兩點(diǎn)停止運(yùn)動;
(2)設(shè)△BPQ的面積面積為S(平方單位)
①求S與t之間的函數(shù)關(guān)系式;
②求t為何值時,△BPQ面積最大,最大面積是多少?
![]()
【答案】(1)7;(2)①當(dāng)0<t<4時,S=﹣t2+6t,當(dāng)4≤t<6時,S=﹣4t+24,當(dāng)6<t≤7時,S=t2﹣10t+24,②t=3時,△PBQ的面積最大,最大值為9
【解析】
(1)求出點(diǎn)Q的運(yùn)動時間即可判斷.
(2)①的三個時間段分別求出△PBQ的面積即可.
②利用①中結(jié)論,求出各個時間段的面積的最大值即可判斷.
解:(1)∵四邊形ABCD是矩形,
∴AD=BC=8cm,AB=CD=6cm,
∴BC+AD=14cm,
∴t=14÷2=7,
故答案為7.
(2)①當(dāng)0<t<4時,S=
(6﹣t)×2t=﹣t2+6t.
當(dāng)4≤t<6時,S=
(6﹣t)×8=﹣4t+24.
當(dāng)6<t≤7時,S=
(t﹣6)(2t﹣8)=t2﹣10t+24.
②當(dāng)0<t<4時,S=
(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,
∵﹣1<0,
∴t=3時,△PBQ的面積最大,最小值為9.
當(dāng)4≤t<6時,S=
(6﹣t)×8=﹣4t+24,
∵﹣4<0,
∴t=4時,△PBQ的面積最大,最大值為8,
當(dāng)6<t≤7時,S=
(t﹣6)(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,
t=7時,△PBQ的面積最大,最大值為3,
綜上所述,t=3時,△PBQ的面積最大,最大值為9.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.
(1)觀察猜想如圖1,點(diǎn)E在BC上,線段AE與BD的數(shù)量關(guān)系,位置關(guān)系.
(2)探究證明把△CDE繞直角頂點(diǎn)C旋轉(zhuǎn)到圖2的位置,(1)中的結(jié)論還成立嗎?說明理由;
(3)拓展延伸:把△CDE繞點(diǎn)C在平面內(nèi)自由旋轉(zhuǎn),若AC=BC=13,DE=10,當(dāng)A、E、D三點(diǎn)在直線上時,請直接寫出AD的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
,
,點(diǎn)
從點(diǎn)
沿邊
,
勻速運(yùn)動到點(diǎn)
,過點(diǎn)
作
交
于點(diǎn)
,線段
,
,
,則能夠反映
與
之間函數(shù)關(guān)系的圖象大致是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( )
![]()
A.(
,0)B.(2,0)C.(
,0)D.(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+3)x+m+1=0.
(1)求證:不論m為何值,方程都有兩個不相等的實(shí)數(shù)根;
(2)若方程一根為4,以此時方程兩根為等腰三角形兩邊長,求此三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】游泳是一項深受青少年喜愛的體育運(yùn)動,某中學(xué)為了加強(qiáng)學(xué)生的游泳安全意識,組織學(xué)生觀看了紀(jì)實(shí)片“孩子,請不要私自下水”,并于觀看后在本校的
名學(xué)生中作了抽樣調(diào)查.制作了下面兩個不完整的統(tǒng)計圖.請根據(jù)這兩個統(tǒng)計圖回答以下問題:
(I)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補(bǔ)全兩個統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校
名學(xué)生中大約有多少人“結(jié)伴時會下河學(xué)游泳”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線
過原點(diǎn),且與
軸交于點(diǎn)
.
(1)求拋物線的解析式及頂點(diǎn)
的坐標(biāo);
(2)已知
為拋物線上一點(diǎn),連接
,
,
,求
的值;
(3)在第一象限的拋物線上是否存在一點(diǎn)
,過點(diǎn)
作
軸于點(diǎn)
,使以
,
,
三點(diǎn)為頂點(diǎn)的三角形與
相似,若存在,求出滿足條件的點(diǎn)
的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E邊BC上,連接AE,將△ABE沿著AE翻折到△AEF,連接CF、DF,若△CDF為等腰三角形,則△CDF的面積為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x
k)2+h.已知球與O點(diǎn)的水平距離為6m時,達(dá)到最高2.6m,球網(wǎng)與O點(diǎn)的水平距離為9m.高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是( )
![]()
A. 球不會過網(wǎng) B. 球會過球網(wǎng)但不會出界
C. 球會過球網(wǎng)并會出界 D. 無法確定
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com