【題目】(2016高考新課標II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數字不是1”,丙說:“我的卡片上的數字之和不是5”,則甲的卡片上的數字是________.
科目:高中數學 來源: 題型:
【題目】建設生態文明,是關系人民福祉,關乎民族未來的長遠大計.某市通宵營業的大型商場,為響應節能減排的號召,在氣溫超過
時,才開放中央空調降溫,否則關閉中央空調.如圖是該市夏季一天的氣溫(單位:
)隨時間(
,單位:小時)的大致變化曲線,若該曲線近似的滿足函數
關系.
![]()
(1)求函數
的表達式;
(2)請根據(1)的結論,判斷該商場的中央空調應在本天內何時開啟?何時關閉?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的兩個焦點分別為F1(﹣1,0)、F2(1,0),短軸的兩個端點分別為B1 , B2
(1)若△F1B1B2為等邊三角形,求橢圓C的方程;
(2)若橢圓C的短軸長為2,過點F2的直線l與橢圓C相交于P,Q兩點,且
,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一場娛樂晚會上,有5位民間歌手(1至5號)登臺演唱,由現場數百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨立地在選票上選3名歌手,其中觀眾甲是1號歌手的歌迷,他必選1號,不選2號,另在3至5號中隨機選2名.觀眾乙和丙對5位歌手的演唱沒有偏愛,因此在1至5號中隨機選3名歌手.
(1)求觀眾甲選中3號歌手且觀眾乙未選中3號歌手的概率;
(2)X表示3號歌手得到觀眾甲、乙、丙的票數之和,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調查一線城市和非一線城市的二孩生育意愿,某機構用簡單隨機抽樣方法從不同地區調查了
位育齡婦女,結果如表.
非一線 | 一線 | 總計 | |
愿生 |
|
|
|
不愿生 |
|
|
|
總計 |
|
|
|
附表:
|
|
|
|
|
|
|
|
由
算得,
參照附表,得到的正確結論是( )
A. 在犯錯誤的概率不超過
的前提下,認為“生育意愿與城市級別有關”
B. 有
以上的把握認為“生育意愿與城市級別有關”
C. 在犯錯誤的概率不超過
的前提下,認為“生育意愿與城市級別無關”
D. 有
以上的把握認為“生育意愿與城市級別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
,
是函數
的圖象上任意不同兩點,依據圖象可知,線段
總是位于
,
兩點之間函數圖象的上方,因此有結論
成立.運用類比思想方法可知,若點
,
是函數
的圖象上任意不同兩點,則類似地有__________成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線
.
(1)若直線
不經過第四象限,求
的取值范圍;
(2)若直線
交
軸負半軸于點
,交
軸正半軸于點
,
為坐標原點,設
的面積為
,求
的最小值及此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有10道題,其中6道甲類題,4道乙類題,張同學從中任取3道題解答.
(1)求張同學至少取到1道乙類題的概率;
(2)已知所取的3道題中有2道甲類題,1道乙類題.設張同學答對甲類題的概率都是
,答對每道乙類題的概率都是
,且各題答對與否相互獨立.用X表示張同學答對題的個數,求X的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com