【題目】如圖,矩形
所在平面與等邊
所在平面互相垂直,
,
分別為
,
的中點(diǎn).
![]()
(1)求證:
平面
.
(2)試問:在線段
上是否存在一點(diǎn)
,使得平面
平面
?若存在,試指出點(diǎn)
的位置,并證明你的結(jié)論:若不存在,請說明理由.
【答案】(1)證明見解析;(2)存在點(diǎn)
,證明見解析.
【解析】
(1)連接
交
于點(diǎn)
,連接
,則
為
的中點(diǎn),利用中位線的性質(zhì)求證即可;
(2)由題可分析得到
平面
,則
,若平面
平面
,只需證明
或
,由于
,
共面,故利用平面幾何性質(zhì)證明
較易,進(jìn)而求證即可
(1)證明:連接
交
于點(diǎn)
,連接
,
![]()
由矩形
知
為
的中點(diǎn),
∵
為
的中點(diǎn),
∴
,
∵
平面
,
平面
,
∴
平面![]()
(2)存在點(diǎn)
,當(dāng)
時(shí),平面
平面
,證明如下:
∵四邊形
是矩形,
,
,
為
中點(diǎn),
∴
,
,即
,
又∵
,
∴
,∴
,
∴
,
∴
,
∵
為
的中點(diǎn),
為正三角形,
∴
,
又∵平面
平面
,且平面
平面
,
平面
,
∴
平面
,
又∵
平面
,
∴
,
又
,
∴
平面
,
∵
平面
,
∴平面
平面![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形
中,
為
的中點(diǎn),將
沿直線
翻折成
,連結(jié)
,
為
的中點(diǎn),則在翻折過程中,下列說法中所有正確的是( )
![]()
A.存在某個(gè)位置,使得![]()
B.翻折過程中,
的長是定值
C.若
,則![]()
D.若
,當(dāng)三棱錐
的體積最大時(shí),三棱錐
的外接球的表面積是![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(
)的左、右焦點(diǎn)分別為
,
且橢圓上存在一點(diǎn)P,滿足.
,![]()
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知A,B分別是橢圓C的左、右頂點(diǎn),過
的直線交橢圓C于M,N兩點(diǎn),記直線
,
的交點(diǎn)為T,是否存在一條定直線l,使點(diǎn)T恒在直線l上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
![]()
(1)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(2)求證:無論點(diǎn)E在BC邊的何處,都有
;
(3)當(dāng)
為何值時(shí),
與平面
所成角的大小為45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是半圓
的直徑,
是半圓
上除點(diǎn)
外的一個(gè)動點(diǎn),
垂直于
所在的平面,垂足為
,
,且
,
.
![]()
(1)證明:平面
平面
;
(2)當(dāng)
為半圓弧的中點(diǎn)時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,
,試求函數(shù)
極小值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位甲、乙、丙三個(gè)部門共有員工60人,為調(diào)查他們的睡眠情況,邐過分層抽樣獲得12名員工每天睡眠的時(shí)間,數(shù)據(jù)如下表(單位:小時(shí))
甲部門 | 6 | 7 | 8 | ||
乙部門 | 6 | 6.5 | 7 | 7.5 | |
丙部門 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門的員工人數(shù);
(2)若將每天睡眠時(shí)間不少于7小時(shí)視為睡眠充足,現(xiàn)從該單位任抽取1人,估計(jì)抽到的此人為睡眠充足者的概率;
(3)從甲部門和乙部門抽出的員工中,各隨機(jī)選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B.假設(shè)所有員工睡眠的時(shí)間相互獨(dú)立.求A的睡眠時(shí)間不少于B的睡眠時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 由an與Sn的關(guān)系求通項(xiàng)公式
(1)已知數(shù)列
的前
項(xiàng)和為
,且![]()
,求數(shù)列
的通項(xiàng)公式;
(2)已知正項(xiàng)數(shù)列
的前
項(xiàng)和
滿足
(
).求數(shù)列
的通項(xiàng)公式;
(3)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=2an+1,求Sn
(4)已知正項(xiàng)數(shù)列
中,
,
,前n項(xiàng)和為
,且滿足
(
).求數(shù)列
的通項(xiàng)公式;
(5)設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,且Tn+2an=2(n∈N*).數(shù)列
是等差數(shù)列;求數(shù)列
的通項(xiàng)公式;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com