【題目】已知數列{an}的前n項和為Sn,且a1=1,an+1=
Sn(n=1,2,3,…).
(1)求數列{an}的通項公式;
(2)當bn=
(3an+1)時,求證:數列
的前n項和Tn=
.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
,O為AC與BD的交點,E為棱PB上一點. ![]()
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現對某市工薪階層關于“樓市限購令”的態度進行調查,隨機抽調了50人,他們月收入的頻數分布及對“樓市限購令”贊成人數如下表.
月收入(單位百元) | [15,25 | [25,35 | [35,45 | [45,55 | [55,65 | [65,75 |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統計數據求下面2
2列聯表中的
的值,并問是否有99%的把握認為“月收入以5500為分界點對“樓市限購令” 的態度有差異;
月收入低于55百元的人數 | 月收入不低于55百元的人數 | 合計 | |
贊成 | a | b | |
不贊成 | c | d | |
合計 | 50 |
(2)若對在[55,65)內的被調查者中隨機選取兩人進行追蹤調查,記選中的2人中不贊成“樓市限購令”的人數為
,求
的概率.
附:
,![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
=1的左頂點為A(﹣3,0),左焦點恰為圓x2+2x+y2+m=0(m∈R)的圓心M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A且與圓M相切于點B的直線,交橢圓C于點P,P與橢圓C右焦點的連線交橢圓于Q,若三點B,M,Q共線,求實數m的值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sin(x+
)圖象上各點的橫坐標縮短到原來的
倍(縱坐標不變),再把得到的圖象向右平移
個單位,得到的新圖象的函數解析式為g(x)= , g(x)的單調遞減區間是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大小;
(2)若
,求b+c的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的焦點F,C上一點
到焦點的距離為5.
(1)求C的方程;
(2)過F作直線l,交C于A,B兩點,若直線AB中點的縱坐標為
,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣mx(m∈R).
(1)若曲線y=f(x)過點P(1,﹣1),求曲線y=f(x)在點P處的切線方程;
(2)求函數f(x)在區間[1,e]上的最大值;
(3)若函數f(x)有兩個不同的零點x1 , x2 , 求證:x1x2>e2 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com