【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,
=
,且a+c=2.
(1)求角B;
(2)求邊長b的最小值.
【答案】
(1)解:在△ABC中,由已知
,
即cosCsinB=(2sinA﹣sinC)cosB,
sin(B+C)=2sinAcosB,sinA=2sinAcosB,
△ABC 中,sinA≠0,
故
.
(2)解:a+c=2,
由(1)
,因此b2=a2+c2﹣2accosB=a2+c2﹣ac
由已知b2=(a+c)2﹣3ac=4﹣3ac
![]()
故b 的最小值為1.
【解析】(1)利用正弦定理化簡表達式,求角B;個兩角和與差的三角函數化簡求解即可.(2)利用余弦定理求邊長b的最小值.推出b的表達式,利用基本不等式求解即可.
【考點精析】通過靈活運用正弦定理的定義,掌握正弦定理:
即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=4x,過焦點F作與x軸垂直的直線l1 , C上任意一點P(x0 , y0)(y0≠0)處的切線為l,l與l1交于M,l與準線交于N,則
= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1. (Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面積S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AB∥CD,∠ADC=90°,PD=AD=AB=1,DC=2. ![]()
(1)求證:BC⊥平面PBD;
(2)求二面角A﹣PB﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的多面體,它的正視圖為直角三角形,側視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點. ![]()
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線E的中心為原點,P(3,0)是E的焦點,過P的直線l與E相交于A,B兩點,且AB的中點為N(﹣12,﹣15),則E的方程式為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com