【題目】選修4-4:坐標系與參數方程
已知圓
的極坐標方程為
,直線
的參數方程為
(
為參數).若直線
與圓
相交于不同的兩點
,
.
(Ⅰ)寫出圓
的直角坐標方程,并求圓心的坐標與半徑;
(Ⅱ)若弦長
,求直線
的斜率.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項為和Sn,點(n,
)在直線y=
x+
上.數列{bn}滿足bn+2-2bn+1+bn=0(nN*),且b3=11,前9項和為153.
(1)求數列{an},{bn}的通項公式;
(2)求數列
的前
項和![]()
(3)設nN*,f(n)=
問是否存在mN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在發生某公共衛生事件期間,有專業機構認為該事件在一段時間沒有發生在規模群體感染的標志為“連續10天,每天新增疑似病例不超過7人”。根據過去10天甲、乙、丙、丁四地新增疑似病例數據,一定符合該標志的是 ( )
![]()
A. 甲地:總體均值為3,中位數為4
B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數為2,眾數為3
D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一盒中裝有除顏色外其余均相同的12個小球,從中隨機取出1個球,取出紅球的概率為
,取出黑球的概率為
,取出白球的概率為
,取出綠球的概率為
.求:
(1)取出的1個球是紅球或黑球的概率;
(2)取出的1個球是紅球或黑球或白球的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com