【題目】等比數(shù)列{an}的前n項和為Sn , 已知S1 , S3 , S2成等差數(shù)列,
(1)求{an}的公比q;
(2)求a1﹣a3=3,求Sn .
【答案】
(1)解:依題意有a1+(a1+a1q)=2(a1+a1q+a1q2)
由于a1≠0,故2q2+q=0
又q≠0,從而 ![]()
(2)解:由已知可得
故a1=4
從而 ![]()
【解析】(1)由題意知a1+(a1+a1q)=2(a1+a1q+a1q2),由此可知2q2+q=0,從而
.(2)由已知可得
,故a1=4,從而
.
【考點精析】根據(jù)題目的已知條件,利用等比數(shù)列的前n項和公式和等差數(shù)列的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握前
項和公式:
;在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求過兩點A(1,4)、B(3,2),且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程.并判斷點M1(2,3),M2(2,4)與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,直線
的方程為
.
(1)若直線
是曲線
的切線,求證:
對任意
成立;
(2)若
對任意
恒成立,求實數(shù)是
應(yīng)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是邊長為
的正方形,側(cè)棱
底面
,且側(cè)棱
的長是
,點
分別是
的中點.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下幾個結(jié)論中:①在△ABC中,有等式
②在邊長為1的正△ABC中一定有
=
③若向量
=(﹣3,2),
=(0,﹣1),則向量
在向量
方向上的投影是﹣2
④與向量
=(﹣3,4)同方向的單位向量是
=(﹣
,
)
⑤若a=40,b=20,B=25°,則滿足條件的△ABC僅有一個;
其中正確結(jié)論的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
為
的極值點,求實數(shù)
的值;
(2)若
在
上為增函數(shù),求實數(shù)
的取值范圍;
(2)若
使方程
有實根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是雙曲線
的左右焦點,以
為直徑的圓與雙曲線的一條漸近線交于點
,與雙曲線交于點
,且
均在第一象限,當(dāng)直線
時,雙曲線的離心率為
,若函數(shù)
,則
()
A. 1 B.
C. 2 D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是梯形,
,
,
,
,側(cè)面
底面
.
![]()
(1)求證:平面
平面
;
(2)若
與底面
所成角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且
a=2csinA.
(1)確定角C的大小;
(2)若c=
,且ab=6,求邊a,b.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com