已知曲線
,求曲線過點(diǎn)
的切線方程。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
,且經(jīng)過點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線
不過點(diǎn)M,求證:直線MA、MB與x軸圍成一個等腰三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在
軸上,焦距為2,離心率為![]()
(1)求橢圓C的方程;
(2)設(shè)直線
經(jīng)過點(diǎn)
(0,1),且與橢圓C交于
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線
相切,過點(diǎn)P(4,0)且不垂直于x軸直線
與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求
的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,P是動點(diǎn),且直線AP與BP的斜率之積等于
.
(1)求動點(diǎn)P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
:
和⊙
:
,過拋物線
上一點(diǎn)
作兩條直線與⊙
相切于
、
兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)
到拋物線準(zhǔn)線的距離為
.![]()
(1)求拋物線
的方程;
(2)當(dāng)
的角平分線垂直
軸時,求直線
的斜率;
(3)若直線
在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的離心率為
,橢圓短軸的一個端點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知動直線
與橢圓
相交于
、
兩點(diǎn). ①若線段
中點(diǎn)的橫坐標(biāo)為
,求斜率
的值;②若點(diǎn)
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖示:已知拋物線
的焦點(diǎn)為
,過點(diǎn)
作直線
交拋物線
于
、
兩點(diǎn),經(jīng)過
、
兩點(diǎn)分別作拋物線
的切線
、
,切線
與
相交于點(diǎn)
.![]()
(1)當(dāng)點(diǎn)
在第二象限,且到準(zhǔn)線距離為
時,求
;
(2)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個頂點(diǎn)為
,焦點(diǎn)在
軸上,若右焦點(diǎn)到直線
的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線
與橢圓相交于不同的兩點(diǎn)
、
,當(dāng)
時,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com