已知函數(shù)
,
.
(Ⅰ)若函數(shù)
在
上至少有一個(gè)零點(diǎn),求
的取值范圍;
(Ⅱ)若函數(shù)
在
上的最大值為
,求
的值.
(Ⅰ)
;(Ⅱ)
或
.
解析試題分析:(Ⅰ)根據(jù)方程的根與函數(shù)的零點(diǎn)的關(guān)系,將問題轉(zhuǎn)化為函數(shù)對(duì)應(yīng)的方程有至少一個(gè)根,那么由判別式與根的個(gè)數(shù)的關(guān)系可知,只要判別式大于或等于0即可,列不等式求解;(Ⅱ)先求出二次函數(shù)的對(duì)稱軸,看看所給的閉區(qū)間與對(duì)稱軸的關(guān)系,分
和
兩種情況進(jìn)行討論:當(dāng)
時(shí),左半?yún)^(qū)間在對(duì)稱軸的左邊,最大值是
;當(dāng)
時(shí),右半?yún)^(qū)間在對(duì)稱軸的右邊,最大值是
.然后結(jié)合最大值是3來求解.
試題解析:(Ⅰ)依題意,函數(shù)
在
上至少有一個(gè)零點(diǎn)
即方程
至少有一個(gè)實(shí)數(shù)根. 2分
所以
,
解得
. 5分
(Ⅱ)函數(shù)
圖象的對(duì)稱軸方程是
.
①當(dāng)
,即
時(shí),
.
解得
或
.又
,
所以
. 9分
② 當(dāng)
,即
時(shí),
解得
.又
,
所以
. 13分
綜上,
或
. 14分
考點(diǎn):1.方程的根與函數(shù)的零點(diǎn)的關(guān)系;2.二次函數(shù)的圖像與性質(zhì);3.二次函數(shù)在閉區(qū)間上的最值;4.解不等式
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
島A觀察站發(fā)現(xiàn)在其東南方向有一艘可疑船只,正以每小時(shí)10海里的速度向東南方向航行,觀察站即刻通知在島A正南方向B處巡航的海監(jiān)船前往檢查.接到通知后,海監(jiān)船測(cè)得可疑船只在其北偏東75°方向且相距10海里的C處,隨即以每小時(shí)10
海里的速度前往攔截.
(I)問:海監(jiān)船接到通知時(shí),距離島A多少海里?
(II)假設(shè)海監(jiān)船在D處恰好追上可疑船只,求它的航行方向及其航行的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)于函數(shù)
若存在
,使得
成立,則稱
為
的不動(dòng)點(diǎn).
已知![]()
(1)當(dāng)
時(shí),求函數(shù)
的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)
,函數(shù)
恒有兩個(gè)相異的不動(dòng)點(diǎn),求
的取值范圍;
(3)在(2)的條件下,若
圖象上
、
兩點(diǎn)的橫坐標(biāo)是函數(shù)
的不動(dòng)點(diǎn),且
、
兩點(diǎn)關(guān)于直線
對(duì)稱,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
“城中觀海”是近年來國內(nèi)很多大中型城市內(nèi)澇所致的現(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內(nèi)澇的一個(gè)重要原因。暴雨會(huì)沖刷城市的垃圾雜物一起進(jìn)入下水道,據(jù)統(tǒng)計(jì),在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時(shí))是雜物垃圾密度x(單位:千克/立方米)的函數(shù)。當(dāng)下水道的垃圾雜物密度達(dá)到2千克/立方米時(shí),會(huì)造成堵塞,此時(shí)排水量為0;當(dāng)垃圾雜物密度不超過0.2千克/立方米時(shí),排水量是90立方米/小時(shí);研究表明,
時(shí),排水量V是垃圾雜物密度x的一次函數(shù)。
(Ⅰ)當(dāng)
時(shí),求函數(shù)V(x)的表達(dá)式;
(Ⅱ)當(dāng)垃圾雜物密度x為多大時(shí),垃圾雜物量(單位時(shí)間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時(shí))
可以達(dá)到最大,求出這個(gè)最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(a是常數(shù),a∈R)
(Ⅰ)當(dāng)a=1時(shí)求不等式
的解集;
(Ⅱ)如果函數(shù)
恰有兩個(gè)不同的零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/10/1/3qrnr1.png" style="vertical-align:middle;" />,
的定義域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/83/c/1qmju2.png" style="vertical-align:middle;" />,其中
。(1)當(dāng)
,求
;(2)設(shè)全集為R,若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品
千件,并且全部銷售完,每千件的銷售收入為
萬元,且![]()
(1)寫出年利潤
(萬元)關(guān)于年產(chǎn)品
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠有
名工人,現(xiàn)接受了生產(chǎn)
臺(tái)
型高科技產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)
型產(chǎn)品由
個(gè)
型裝置和
個(gè)
型裝置配套組成,每個(gè)工人每小時(shí)能加工
個(gè)
型裝置或
個(gè)
型裝置.現(xiàn)將工人分成兩組同時(shí)開始加工,每組分別加工一種裝置(完成自己的任務(wù)后不再支援另一組).設(shè)加工
型裝置的工人有
人,他們加工完
型裝置所需時(shí)間為
,其余工人加工完
型裝置所需時(shí)間為
(單位:小時(shí),可不為整數(shù)).
(1)寫出
、
的解析式;
(2)寫出這
名工人完成總?cè)蝿?wù)的時(shí)間
的解析式;
(3)應(yīng)怎樣分組,才能使完成總?cè)蝿?wù)用的時(shí)間最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知冪函數(shù)
為偶函數(shù),且在區(qū)間
上是單調(diào)增函數(shù).
⑴求函數(shù)
的解析式;
⑵設(shè)函數(shù)
,若
的兩個(gè)實(shí)根分別在區(qū)間
內(nèi),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com