【題目】已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分別根據(jù)下列條件求實(shí)數(shù)a的取值范圍.
(1)A∩B=
;(2)A(A∩B).
【答案】(1){a|a≤7};(2){a|a<6或a>
}
【解析】
(1)根據(jù)A∩B=,可得-1≤2a+1≤x≤3a-5≤16,解不等式可得a的取值范圍;
(2)由A(A∩B)得AB,分類討論,A=與A≠,分別建立不等式,即可求實(shí)數(shù)a的取值范圍
(1)若A=,則A∩B=成立.
此時(shí)2a+1>3a-5,
即a<6.
若A≠,則
解得6≤a≤7.
綜上,滿足條件A∩B=的實(shí)數(shù)a的取值范圍是{a|a≤7}.
(2)因?yàn)?/span>A(A∩B),且(A∩B)A,
所以A∩B=A,即AB.
顯然A=滿足條件,此時(shí)a<6.
若A≠,則
或![]()
由
解得a∈;由
解得a>
.
綜上,滿足條件A(A∩B)的實(shí)數(shù)a的取值范圍是{a|a<6或a>
}.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
對(duì)任意實(shí)數(shù)
恒有
且當(dāng)
,
,又
.
(1)判斷
的奇偶性;
(2)求
在區(qū)間
上的最大值;
(3)解關(guān)于
的不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,
,圓
是以
的中點(diǎn)為圓心,
為半徑的圓.
(1)若圓
的切線在
軸和
軸上截距相等,求切線方程;
(2)若
是圓
外一點(diǎn),從
向圓
引切線
,
為切點(diǎn),
為坐標(biāo)原點(diǎn),
,求使
最小的點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)![]()
![]()
同時(shí)滿足下列兩個(gè)條件:
①
圖象最值點(diǎn)與左右相鄰的兩個(gè)對(duì)稱中心構(gòu)成等腰直角三角形
②
是
的一個(gè)對(duì)稱中心.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)遞增區(qū)間;
(2)設(shè)
,若對(duì)任意
,總是存在
,使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
中,
,P為線段AC上任意一點(diǎn),則
的范圍是( )
A. [1,4] B. [0,4] C. [-2,4] D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,錯(cuò)誤的是( )
A.一條直線與兩個(gè)平行平面中的一個(gè)平面相交,則必與另一個(gè)平面相交
B.平行于同一個(gè)平面的兩個(gè)不同平面平行
C.若直線l與平面
平行,則過(guò)平面
內(nèi)一點(diǎn)且與直線l平行的直線在平面
內(nèi)
D.若直線l不平行于平面
,則在平面
內(nèi)不存在與l平行的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對(duì)某類休育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
![]()
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(1)根據(jù)已知條件完成下面的
列聯(lián)表,并據(jù)此資料判斷是否有
的把握認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)將日均收看讀體育節(jié)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
附
.
| 0.05 | 0.01 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
.
(1)當(dāng)
時(shí),
的值域是
,試求實(shí)數(shù)
的值;
(2)設(shè)關(guān)于
的方程
的兩個(gè)實(shí)根為
;試問(wèn):是否存在實(shí)數(shù)
,使得不等式
對(duì)任意
及
恒成立?若存在,求實(shí)數(shù)
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,且
.
(1)求f(x)的解析式;
(2)判斷f(x)在區(qū)間(0,1)上的單調(diào)性,并用定義法證明.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com