已知函數(shù)
,設(shè)![]()
(1)求
的單調(diào)區(qū)間;
(2)若以
圖象上任意一點(diǎn)
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)
的最小值;
(3)是否存在實(shí)數(shù)
,使得函數(shù)
的圖象與
的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出
的取值范圍,若不存在,說(shuō)明理由。
(1)增區(qū)間
減區(qū)間
(2)
(3)![]()
解析試題分析:(1)![]()
)![]()
![]()
由
。
(2)![]()
當(dāng)![]()
(3)若
的圖象與
的圖象恰有四個(gè)不同交點(diǎn),
即
有四個(gè)不同的根,亦即
有四個(gè)不同的根。
令
,
則
。
當(dāng)
變化時(shí)
的變化情況如下表:
由表格知:![]()
![]()
(-1,0) (0,1) (1,
)
的符號(hào)+ - + -
的單調(diào)性↗ ↘ ↗ ↘
。
畫出草圖和驗(yàn)證
可知,當(dāng)
時(shí),![]()
![]()
![]()
考點(diǎn):函數(shù)單調(diào)性最值
點(diǎn)評(píng):第二問(wèn)第三問(wèn)中的不等式恒成立或方程的根的問(wèn)題都可通常轉(zhuǎn)化為函數(shù)最值問(wèn)題,這兩種轉(zhuǎn)化是常考知識(shí)點(diǎn),須加以重視
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/d/hgxkp1.png" style="vertical-align:middle;" />,且滿足對(duì)于定義域內(nèi)任意的
都有等式
.
(1)求
的值;
(2)判斷
的奇偶性并證明;
(3)若
,且
在
上是增函數(shù),解關(guān)于
的不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,函數(shù)
的圖象與
軸相交于點(diǎn)
,且該函數(shù)的最小正周期為
.![]()
(1)、求
和
的值;
(2)、已知點(diǎn)
,點(diǎn)
是該函數(shù)圖象上一點(diǎn),
點(diǎn)
是
的中點(diǎn),當(dāng)
,
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于區(qū)間
上有意義的兩個(gè)函數(shù)
如果有任意![]()
,均有
則稱
與
在
上是接近的,否則稱
與
在
上是非接近的.現(xiàn)有兩個(gè)函數(shù)
與
給定區(qū)間
, 討論
與
在給定區(qū)間
上是否是接近的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)![]()
(1)求
,并求數(shù)列
的通項(xiàng)公式.
(2)已知函數(shù)
在
上為減函數(shù),設(shè)數(shù)列
的前
的和為
,
求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中
。
(1)當(dāng)a=1時(shí),求它的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),討論它的單調(diào)性;
(3)若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(a,b為常數(shù))且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1="3," x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)
,解關(guān)于x的不等式;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,當(dāng)
時(shí)函數(shù)
取得一個(gè)極值,其中
.
(Ⅰ)求
與
的關(guān)系式;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)當(dāng)
時(shí),函數(shù)
的圖象上任意一點(diǎn)的切線的斜率恒大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f (x)的定義域?yàn)?i>M,具有性質(zhì)P:對(duì)任意x∈M,都有f (x)+f (x+2)≤2f (x+1).
(1)若M為實(shí)數(shù)集R,是否存在函數(shù)f (x)=ax (a>0且a≠1,x∈R) 具有性質(zhì)P,并說(shuō)明理由;
(2)若M為自然數(shù)集N,并滿足對(duì)任意x∈M,都有f (x)∈N. 記d(x)=f (x+1)-f (x).
(ⅰ) 求證:對(duì)任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求證:存在整數(shù)0≤c≤d(1)及無(wú)窮多個(gè)正整數(shù)n,滿足d(n)=c.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com