【題目】設(shè)關(guān)于
的一元二次方程
.
(1)若
從
,
,
,
四個(gè)數(shù)中任取的一個(gè)數(shù),
是從
,
,
三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若
是從區(qū)間
上任取的一個(gè)數(shù),
是從區(qū)間
上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
【答案】(1)
;(2)
.
【解析】試題分析:(1)所有基本事件為從
,
,
,
四個(gè)數(shù)中任取的一個(gè)數(shù),
是從
,
,
三個(gè)數(shù)中任取的一個(gè)數(shù);所求事件為方程有實(shí)根
,即
,分別列舉出
的組合,根據(jù)古典概型計(jì)算概率;(2)所有基本事件為
從區(qū)間
上任取的一個(gè)數(shù),
是從區(qū)間
上任取的一個(gè)數(shù),所求事件為方程有實(shí)根, 即
,分別列出不等式畫(huà)出區(qū)域,根據(jù)幾何概型求出概率.
試題解析:
若方程
有實(shí)根,則
,即
.
(1)設(shè)“方程
有實(shí)根”為事件
,
∵
從
四個(gè)數(shù)中任取的一個(gè)數(shù),
是從
三個(gè)數(shù)中任取的一個(gè)數(shù),
∴記
為所取兩數(shù)的一個(gè)組合,則所有可能的取法有:
,
,
,
,
,
,
,
,
,
,
,
共12種且每種均等可能被抽到,其中滿足條件
的有
,
,
,
,
,
,
,
,
共9種,
∴
.
答:方程
有實(shí)根的概率為
.
(2)設(shè)“方程
有實(shí)根”為事件
,
∵
從區(qū)間
上任取的一個(gè)數(shù),
是從區(qū)間
上任取的一個(gè)數(shù),
∴記
為所取兩數(shù)的一個(gè)組合,則
,
,
∴點(diǎn)
所在的區(qū)域?yàn)槿鐖D所示的矩形,
又條件
可化為
,即
,
∴滿足條件
的點(diǎn)
所在的區(qū)域?yàn)槿鐖D所示的陰影部分區(qū)域
∴
.
答:方程
有實(shí)根的概率是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(1+x)+lg(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
的離心率為
,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為
,求△AOB面積的最大值,并求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)市場(chǎng)分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本
(萬(wàn)元)可以看成月產(chǎn)量
(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬(wàn)元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬(wàn)元.
(1)寫(xiě)出月總成本
(萬(wàn)元)關(guān)于月產(chǎn)量
(噸)的函數(shù)關(guān)系;
(2)已知該產(chǎn)品的銷(xiāo)售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn).
(3)當(dāng)月產(chǎn)量為多少?lài)崟r(shí),每噸平均成本最低,最低成本是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校在一次第二課堂活動(dòng)中,特意設(shè)置了過(guò)關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒(méi)過(guò)者沒(méi)獎(jiǎng)勵(lì),過(guò)
關(guān)者獎(jiǎng)勵(lì)
件小獎(jiǎng)品(獎(jiǎng)品都一樣).下圖是小明在10次過(guò)關(guān)游戲中過(guò)關(guān)數(shù)的條形圖,以此頻率估計(jì)概率.
(Ⅰ)求小明在這十次游戲中所得獎(jiǎng)品數(shù)的均值;
(Ⅱ)規(guī)定過(guò)三關(guān)者才能玩另一個(gè)高級(jí)別的游戲,估計(jì)小明一次游戲后能玩另一個(gè)游戲的概率;
(Ⅲ)已知小明在某四次游戲中所過(guò)關(guān)數(shù)為{2,2,3,4},小聰在某四次游戲中所過(guò)關(guān)數(shù)為{3,3,4,5},現(xiàn)從中各選一次游戲,求小明和小聰所得獎(jiǎng)品總數(shù)超過(guò)10的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
:
,
:
(
).
(1)若
,
為假,
為真,求實(shí)數(shù)
的取值范圍;
(2)若
是
的充分條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)若
時(shí),不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面結(jié)論正確的是( )
①一個(gè)數(shù)列的前三項(xiàng)是1,2,3,那么這個(gè)數(shù)列的通項(xiàng)公式
.
②由平面三角形的性質(zhì)推測(cè)空間四面體的性質(zhì),這是一種合理推理.
③在類(lèi)比時(shí),平面中的三角形與空間中的平行六面體作為類(lèi)比對(duì)象較為合適.
④“所有3的倍數(shù)都是9的倍數(shù),某數(shù)
一定是9的倍數(shù),則
一定是9的倍數(shù)”,這是三段論推理,但其結(jié)論是錯(cuò)誤的.
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;
其中正確的結(jié)論是 . ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com