已知
=2,點(diǎn)(
)在函數(shù)
的圖像上,其中
=
.
(1)證明:數(shù)列
}是等比數(shù)列;
(2)設(shè)
,求
及數(shù)列{
}的通項(xiàng)公式;
(3)記
,求數(shù)列{
}的前n項(xiàng)和
,并求
的值.
(1)根據(jù)等比數(shù)列的定義,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d7/c/xwwhb1.png" style="vertical-align:middle;" />,進(jìn)而得到證明。
(2)![]()
,![]()
![]()
(3)1
解析試題分析:(1)證明:由已知
,![]()
兩邊取對(duì)數(shù)得![]()
,即![]()
是公比為2的等比數(shù)列。
(2)解:由(1)知![]()
![]()
![]()
![]()
![]()
=
(3)![]()
![]()
![]()
![]()
![]()
又 ![]()
考點(diǎn):數(shù)列的遞推關(guān)系式以及數(shù)列的求和
點(diǎn)評(píng):主要是考查了數(shù)列的概念以及數(shù)列求和的綜合運(yùn)用,屬于中檔題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
前
項(xiàng)和
,數(shù)列
滿足
(
),
(1)求數(shù)列
的通項(xiàng)公式;
(2)求證:當(dāng)
時(shí),數(shù)列
為等比數(shù)列;
(3)在(2)的條件下,設(shè)數(shù)列
的前
項(xiàng)和為
,若數(shù)列
中只有
最小,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和為
,且
,
.
(Ⅰ)求數(shù)列
和
的通項(xiàng)公式;
(Ⅱ)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
是首項(xiàng)為1,公差為
的等差數(shù)列,數(shù)列
是首項(xiàng)為1,公比為
的等比數(shù)列.
(1)若
,
,求數(shù)列
的前
項(xiàng)和;
(2)若存在正整數(shù)
,使得
.試比較
與
的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列
中,對(duì)于任意
,等式:
恒成立,其中常數(shù)
.
(1)求
的值; (2)求證:數(shù)列
為等比數(shù)列;
(3)如果關(guān)于
的不等式
的解集為
,試求實(shí)數(shù)
、
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
,
是方程![]()
的兩根, 數(shù)列
是公差為正的等差數(shù)列,數(shù)列
的前
項(xiàng)和為
,且![]()
![]()
![]()
.
(1)求數(shù)列
,
的通項(xiàng)公式;
(2)記
=![]()
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)如圖,9個(gè)正數(shù)排列成3行3列,其中每一行的數(shù)成等差數(shù)列,每一列的數(shù)成等比數(shù)列,且所有的公比都是
,已知
,
又設(shè)第一行數(shù)列的公差為
.![]()
(Ⅰ)求出
,
及
;
(Ⅱ)若保持這9個(gè)數(shù)的位置不動(dòng),按照上述規(guī)律,補(bǔ)成一個(gè)n行n列的數(shù)表如下,試寫(xiě)出數(shù)表第n行第n列
的表達(dá)式,并求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com