【題目】已知函數
,當
時,對于任意的實數
,都有不等式
成立,則實數
的取值范圍是
A.
B.
C.
D. ![]()
【答案】D
【解析】分析:求得f(x)的導數,可得f(x)的單調性,令g(x)=f(x)﹣f(1﹣x),可得g(x)的單調性,以及g(x)+g(1﹣x)=0,將原不等式轉化,可得x1>1﹣sin2θ恒成立,由正弦函數的值域即可得到所求范圍.
詳解:函數f(x)=e2018x+mx3﹣m(m>0),
導數為f′(x)=2018e2018x+3mx2,
可得m>0時,f(x)在R上遞增,
可令g(x)=f(x)﹣f(1﹣x),
可得g(x)在R上遞增,
且g(x)+g(1﹣x)=f(x)﹣f(1﹣x)+f(1﹣x)﹣f(x)=0,
由f(x1)+f(sin2θ)>f(x2)+f(cos2θ)成立,
可得f(x1)﹣f(x2)+f(sin2θ)﹣f(cos2θ)>0成立,
即為f(x1)﹣f(1﹣x1)+f(sin2θ)﹣f(1﹣sin2θ)>0,
即g(x1)+g(sin2θ)>0,
可得g(x1)>﹣g(sin2θ)=g(1﹣sin2θ),
即有x1>1﹣sin2θ恒成立,
由于1﹣sin2θ的最大值為1,可得x1>1,
故選:D.
科目:高中數學 來源: 題型:
【題目】已知橢圓
的中心在原點,焦點在坐標軸上,且經過
,
.
(Ⅰ)求橢圓的標準方程和離心率;
(Ⅱ)四邊形
的四個頂點都在橢圓
上,且對角線
,
過原點
,若
,求證:四邊形
的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】阿基米德是古希臘偉大的哲學家、數學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”他們的調查結果如下:
![]()
(1)完成如下
列聯表,并判斷是否有
的把握認為,了解阿基米德與選擇文理科有關?
![]()
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(ⅰ)求抽取的文科生和理科生的人數;
(ⅱ)從10人的樣本中隨機抽取兩人,求兩人都是文科生的概率.
參考數據:
![]()
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016高考新課標II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數字不是1”,丙說:“我的卡片上的數字之和不是5”,則甲的卡片上的數字是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業得到迅猛發展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進行統計,得到頻率分布直方圖如圖1.
![]()
圖1 圖2
(1)記“在
年成交的二手車中隨機選取一輛,該車的使用年限在
”為事件
,試估計
的概率;
(2)根據該汽車交易市場的歷史資料,得到散點圖如圖2,其中
(單位:年)表示二手車的使用時間,
(單位:萬元)表示相應的二手車的平均交易價格.由散點圖看出,可采用
作為二手車平均交易價格
關于其使用年限
的回歸方程,相關數據如下表(表中
,
):
|
|
|
|
|
|
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根據回歸方程類型及表中數據,建立
關于
的回歸方程;
②該汽車交易市場對使用8年以內(含8年)的二手車收取成交價格
的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格
的傭金.在圖1對使用時間的分組中,以各組的區間中點值代表該組的各個值.若以2017年的數據作為決策依據,計算該汽車交易市場對成交的每輛車收取的平均傭金.
附注:①對于一組數據
,其回歸直線
的斜率和截距的最小二乘估計分別為
;
②參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數方程為
(
為參數).在以原點
為極點,
軸正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(1)求直線
的極坐標方程和曲線
的直角坐標方程;
(2)若直線
與曲線
交于
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
是兩個不同的平面,
是兩條不同的直線,有如下四個命題:
①若
,則
; ②若
,則
;
③若
,則
; ④若
,則
.
其中真命題為_________(填所有真命題的序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com