【題目】如圖,在四棱錐
中,
面
,
,
,
,
,
是
的中點.
![]()
(1)求證:
平面
;
(2)求三棱錐
的體積.
【答案】(1)見解析;(2)
.
【解析】試題分析:(1)取PB中點M,連結AM,MN,推導出四邊形AMND是平行四邊形,從而ND∥AM,由此能證明ND∥面PAB.
(2)N到面ABCD的距離等于P到面ABCD的距離的一半,且PA⊥面ABCD,PA=4,從而三棱錐N-ACD的高是2,由此能求出三棱錐N-ACD的體積.
試題解析:
證明:(Ⅰ)如圖,取PB中點M,連結AM,MN.
∵MN是△BCP的中位線,∴MN∥
BC,且MN=
BC.
依題意得,AD
BC,則有AD
MN
∴四邊形AMND是平行四邊形,∴ND∥AM
∵ND面PAB,AM面PAB,
∴ND∥面PAB
(Ⅱ)∵N是PC的中點,
∴N到面ABCD的距離等于P到面ABCD的距離的一半,且PA⊥面ABCD,PA=4,
∴三棱錐NACD的高是2.
在等腰△ABC中,AC=AB=3,BC=4,BC邊上的高為
.
BC∥AD,∴C到AD的距離為
,
∴S△ADC=
.
∴三棱錐NACD的體積是
.
![]()
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,設點
(1,0),直線
:
,點
在直線
上移動,
是線段
與
軸的交點, 異于點R的點Q滿足:
,
.
(1)求動點
的軌跡的方程;
(2) 記
的軌跡的方程為
,過點
作兩條互相垂直的曲線![]()
的弦
.
,設
.
的中點分別為
.
問直線
是否經過某個定點?如果是,求出該定點,
如果不是,說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
極坐標系中,
為極點,半徑為2的圓
的圓心坐標為
.
(1)求圓
的極坐標方程;
(2)設直角坐標系的原點與極點
重合,
軸非負關軸與極軸重合,直線
的參數方程為
(
為參數),由直線
上的點向圓
引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
,(其中
,
為自然對數的底數,
……).
(1)令
,若
對任意的
恒成立,求實數
的值;
(2)在(1)的條件下,設
為整數,且對于任意正整數
,
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線
的極坐標方程為
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(1)寫出曲線
的參數方程和直線
的普通方程;
(2)已知點
是曲線
上一點,求點
到直線
的最小距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足a3=7,a5+a7=26.{an}的前n項和為Sn .
(1)求an及Sn;
(2)令bn=﹣
(n∈N*),求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓
,定點
為圓上一動點,線段
的垂直平分線交線段
于點
,設點
的軌跡為曲線
;
(Ⅰ)求曲線
的方程;
(Ⅱ)若經過
的直線
交曲線于不同的兩點
,(點
在點
,
之間),且滿足
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com