【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在
,
,
,
,
,
(單位:克)中,經統計得頻率分布直方圖如圖所示.
![]()
(1)現按分層抽樣從質量為
,
的芒果中隨機抽取
個,再從這
個中隨機抽取
個,記隨機變量
表示質量在
內的芒果個數,求
的分布列及數學期望.
(2)以各組數據的中間數代表這組數據的平均值,將頻率視為概率,某經銷商來收購芒果,該種植園中還未摘下的芒果大約還有
個,經銷商提出如下兩種收購方案:
A:所以芒果以
元/千克收購;
B:對質量低于
克的芒果以
元/個收購,高于或等于
克的以
元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
科目:高中數學 來源: 題型:
【題目】如圖,底面半徑為
,母線長為
的圓柱的軸截面是四邊形
,線段
上的兩動點
,
滿足
.點
在底面圓
上,且
,
為線段
的中點.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)四棱錐
的體積是否為定值,若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了準確把握市場,做好產品計劃,特對某產品做了市場調查:先銷售該產品50天,統計發現每天的銷售量
分布在
內,且銷售量
的分布頻率滿足: ![]()
(1)求
的值并估計銷售量的平均數;
(2)若銷售量大于等于80,則稱該日暢銷,其余為滯銷.在暢銷日中用分層抽樣的方法隨機抽取6天,再從這6天中隨機抽取3天進行統計,求這3天不都來自同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線
的參數方程為
(
為參數).以直角坐標系的原點
為極點,
軸的正半軸為極軸建立坐標系,曲線
的極坐標方程為
.
(1)求
的普通方程和
的直角坐標方程;
(2)若過點
的直線
與
交于
,
兩點,與
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,點
的坐標為
,直線
的參數方程為
(
為參數).以坐標原點
為極點,以
軸的非負半軸為極軸,選擇相同的單位長度建立極坐標系,圓
極坐標方程為
.
(Ⅰ)當
時,求直線
的普通方程和圓
的直角坐標方程;
(Ⅱ)直線
與圓
的交點為
、
,證明:
是與
無關的定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com