【題目】我國南宋數學家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項式anxn+an﹣1xn﹣1+…+a1x+a0 , 當x=x0時的值的一種簡捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進行求值.運行如圖所示的程序框圖,能求得多項式( )的值. ![]()
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4
科目:高中數學 來源: 題型:
【題目】已知函數 f(x)=
,x∈R,其中 a>0.
(Ⅰ)求函數 f(x)的單調區間;
(Ⅱ)若函數 f(x)(x∈(-2,0))的圖象與直線 y=a 有兩個不同交點,求 a 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為1的正方體ABCD﹣A'B'C'D'中,E是AA'的中點,P是三角形BDC'內的動點,EP⊥BC',則P的軌跡長為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司針對一個擁有20000人的企業推出一款意外險產品,每年每位職工只要交少量保費,發生意外后可一次性獲得若干賠償金.保險公司把企業的所有崗位共分為A、B、C三類工種,從事三類工種的人數分布比例如圖,根據歷史數據統計出三類工種的賠付頻率如下表(并以此估計賠付頻率).
工種類別 | A | B | C |
賠付頻率 |
|
|
|
對于A、B、C三類工種職工每人每年保費分別為a元,a元,b元,出險后的賠償金額分別為100萬元,100萬元,50萬元,保險公司在開展此項業務過程中的固定支出為每年10萬元.![]()
(Ⅰ)若保險公司要求利潤的期望不低于保費的20%,試確定保費a、b所要滿足的條件;
(Ⅱ)現有如下兩個方案供企業選擇;
方案1:企業不與保險公司合作,企業自行拿出與保險提供的等額的賠償金額賠付給出險職工;
方案2:企業與保險公司合作,企業負責職工保費的60%,職工個人負責保費的40%,出險后賠償金由保險公司賠付.
若企業選擇翻翻2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費a、b所要滿足的條件,并判斷企業是否可與保險公司合作.(若企業選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險公司所提條件不矛盾,則企業可與保險公司合作.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示是某市2017年4月1日至14日的空氣質量指數趨勢圖,空氣質量指數(AQI)小于100表示空氣質量優良,空氣質量指數大于200表示空氣重度污染,某同志隨機選擇4月1日至4月12日中的某一天到達該市,并停留3天. 該同志到達當日空氣質量重度污染的概率 . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解一種植物的生長情況,抽取一批該植物樣本測量高度(單位:cm),其頻率分布直方圖如圖所示.
(1)求該植物樣本高度的平均數x和樣本方差s2(同一組中的數據用該組區間的中點值作代表);
(2)假設該植物的高度Z服從正態分布N(μ,σ2),其中μ近似為樣本平均數x,σ2近似為樣本方差s2,利用該正態分布求P(64.5<Z<96).
(附:
=10.5.若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4)
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為
(
為參數),在以坐標原點O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sin θ,直線
:θ=
(ρ>0),A(2,0).
(1)把C1的普通方程化為極坐標方程,并求點A到直線
的中距離;
(2)設直線
分別交C1,C2于點P,Q,求△APQ的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com