【題目】某種產品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應數據:
![]()
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程
=
x+
;
(參考公式:用最小二乘法求線性回歸方程系數公式
,
.)
【答案】(1)見解析;(2)![]()
【解析】試題分析:(1)根據表中所給的五組數據,得到五個點的坐標,在平面直角坐標系中畫出散點圖.(2 )先求出橫標和縱標的平均數,得到這組數據的樣本中心點,利用最小二乘法求出線性回歸方程的系數,代入樣本中心點求出
的值,寫出線性回歸方程.
試題解析:(1)散點圖如下圖所示:
![]()
(2)
,
,
,
,
,
所求回歸直線方程為![]()
【方法點晴】本題主要考查散點圖的畫法和線性回歸方程,屬于難題.求回歸直線方程的步驟:①依據樣本數據畫出散點圖,確定兩個變量具有線性相關關系;②計算
的值;③計算回歸系數
;④寫出回歸直線方程為
;(2) 回歸直線過樣本點中心
是一條重要性質,利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
;
(1)若f(x)的定義域為 (-∞,+∞), 求實數a的范圍;
(2)若f(x)的值域為 [0, +∞), 求實數a的范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某村積極開展“美麗鄉村生態家園”建設,現擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設美麗鄉村生態公園,給村民休閑健身提供去處.點M,N分別在邊AB,AD上. (Ⅰ)當點M,N分別是邊AB,AD的中點時,求∠MCN的余弦值;
(Ⅱ)由于村建規劃及保護生態環境的需要,要求△AMN的周長為2千米,請探究∠MCN是否為定值,若是,求出此定值,若不是,請說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視臺舉行電視奧運知識大獎賽,比賽分初賽和決賽兩部分.為了增加節目的趣味性,
初賽采用選手選一題答一題的方式進行,每位選手最多有
次選題答題的機會,選手累計答對
題或答錯
題即終止其初賽的比賽,答對
題者直接進入決賽,答錯
題者則被淘汰.已知選手甲答題的正確率為
.
(1) 求選手甲可進入決賽的概率;
(2) 設選手甲在初賽中答題的個數為
,試寫出
的分布列,并求
的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓
,圓
,動圓
與圓
外切并與圓
內切,圓心
的軌跡為曲線
.
(1)求
的方程;
(2)
是與圓
,圓
都相切的一條直線,
與曲線
交于
兩點,當圓
的半徑最長時,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數.
(I)求f(0)的值和實數m的值;
(II)當m=1時,判斷函數f(x)在(﹣1,1)上的單調性,并給出證明;
(III)若
且f(b﹣2)+f(2b﹣2)>0,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數
在區間
上是增函數,且最大值為10,最小值為4,則在區間
上
的最大值、最小值分別是( )
A. -4,-10 B. 4,-10
C. 10,4 D. 不確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com