已知偶函數(shù)
滿足:當(dāng)
時(shí),
,
當(dāng)
時(shí),![]()
(1) 求當(dāng)
時(shí),
的表達(dá)式;
(2) 試討論:當(dāng)實(shí)數(shù)
滿足什么條件時(shí),函數(shù)
有4個(gè)零點(diǎn),
且這4個(gè)零點(diǎn)從小到大依次構(gòu)成等差數(shù)列.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知函數(shù)
,
(Ⅰ)分別求出
、
、
、
的值;
(Ⅱ)根據(jù)(Ⅰ)中所求得的結(jié)果,請(qǐng)寫出
與
之間的等式關(guān)系,并證明這個(gè)等式關(guān)系;
(Ⅲ)根據(jù)(Ⅱ)中總結(jié)的等式關(guān)系,
請(qǐng)計(jì)算表達(dá)式
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
(
,
為常數(shù)),且方程
有兩個(gè)實(shí)根為
.
(1)求
的解析式;
(2)證明:曲線
的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè) x1、x2(
)是函數(shù)
(
)的兩個(gè)極值點(diǎn).
(I)若
,
,求函數(shù)
的解析式;
(II)若
,求 b 的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/48/9/1irov3.png" style="vertical-align:middle;" />,且恒有等式
對(duì)任意的實(shí)
數(shù)
成立.
(Ⅰ)試求
的解析式;
(Ⅱ)討論
在
上的單調(diào)性,并用單調(diào)性定義予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
.![]()
(1)若
在
上的最大值是
,求
的值;
(2)若對(duì)于任意
,總存在
,使得
成立,求
的取值范圍;
(3)若
在
上有解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0且a≠1,
。
(1)判斷函數(shù)f(x)是否有零點(diǎn),若有求出零點(diǎn);
(2)判斷函數(shù)f(x)的奇偶性;
(3)討論f(x)的單調(diào)性并用單調(diào)性定義證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的增函數(shù)y=f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求f
(0)
(Ⅱ)求證f(x)為奇函數(shù);
(Ⅲ)若f(
)+f(3
-9
-2)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)函數(shù)f(x)=loga(x2-4ax+3a2), 0<a<1, 當(dāng)x∈[a+2,a+3]時(shí),恒有|f(x)|≤1,試確定a的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com