【題目】由四棱柱
截去三棱錐
后得到的幾何體如圖所示,四邊形
是邊長(zhǎng)為
的正方形,
為
與
的交點(diǎn),
為
的中點(diǎn),
平面
.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)若直線
與平面
所成的角為
,求線段
的長(zhǎng).
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)
.
【解析】
(Ⅰ)取
的中點(diǎn)
,連接
、
,證明四邊形
為平行四邊形,可得出
,再利用線面平行的判定定理可證明出
平面
;
(Ⅱ)以點(diǎn)
為坐標(biāo)原點(diǎn),
、
所在直線分別為
、
軸建立空間直角坐標(biāo)系,設(shè)
,計(jì)算出平面
的一個(gè)法向量,利用直線
與平面
所成的角為
,計(jì)算出
的值,進(jìn)而得解.
(Ⅰ)取
的中點(diǎn)
,連接
、
,
由于
為四棱柱,所以,
且
,
四邊形
為平行四邊形,則
且
,
、
分別為
、
的中點(diǎn),所以
,且
,
因此四邊形
為平行四邊形,所以
.
又
平面
,
平面
,所以
平面
;
![]()
(Ⅱ)如圖,建立空間直角坐標(biāo)系,設(shè)
,
易知
、
、
、
,從而可得
.
設(shè)平面
的法向量為
,
又
,
,故有
,解得
,
可取
.
由題意得
,
解得
,即線段
的長(zhǎng)為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,已知拋物線
的焦點(diǎn)為
,準(zhǔn)線與
軸的交點(diǎn)為
.過(guò)點(diǎn)
的直線與拋物線相交于
、
兩點(diǎn),
、
分別與
軸相交于
、
兩點(diǎn),當(dāng)
軸時(shí),
.
![]()
(1)求拋物線的方程;
(2)設(shè)
的面積為
,
面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某健身機(jī)構(gòu)統(tǒng)計(jì)了去年該機(jī)構(gòu)所有消費(fèi)者的消費(fèi)金額(單位:元),如下圖所示:
![]()
(1)將去年的消費(fèi)金額超過(guò) 3200 元的消費(fèi)者稱(chēng)為“健身達(dá)人”,現(xiàn)從所有“健身達(dá)人”中隨機(jī)抽取 2 人,求至少有 1 位消費(fèi)者,其去年的消費(fèi)金額超過(guò) 4000 元的概率;
(2)針對(duì)這些消費(fèi)者,該健身機(jī)構(gòu)今年欲實(shí)施入會(huì)制,詳情如下表:
會(huì)員等級(jí) | 消費(fèi)金額 |
普通會(huì)員 | 2000 |
銀卡會(huì)員 | 2700 |
金卡會(huì)員 | 3200 |
預(yù)計(jì)去年消費(fèi)金額在
內(nèi)的消費(fèi)者今年都將會(huì)申請(qǐng)辦理普通會(huì)員,消費(fèi)金額在
內(nèi)的消費(fèi)者都將會(huì)申請(qǐng)辦理銀卡會(huì)員,消費(fèi)金額在
內(nèi)的消費(fèi)者都將會(huì)申請(qǐng)辦理金卡會(huì)員. 消費(fèi)者在申請(qǐng)辦理會(huì)員時(shí),需-次性繳清相應(yīng)等級(jí)的消費(fèi)金額.該健身機(jī)構(gòu)在今年底將針對(duì)這些消費(fèi)者舉辦消費(fèi)返利活動(dòng),現(xiàn)有如下兩種預(yù)設(shè)方案:
方案 1:按分層抽樣從普通會(huì)員, 銀卡會(huì)員, 金卡會(huì)員中總共抽取 25 位“幸運(yùn)之星”給予獎(jiǎng)勵(lì): 普通會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 500 元; 銀卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 600 元; 金卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 800 元.
方案 2:每位會(huì)員均可參加摸獎(jiǎng)游戲,游戲規(guī)則如下:從-個(gè)裝有 3 個(gè)白球、 2 個(gè)紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個(gè)球.若摸到紅球的總數(shù)消費(fèi)金額/元為 2,則可獲得 200 元獎(jiǎng)勵(lì)金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎(jiǎng)勵(lì)金;其他情況不給予獎(jiǎng)勵(lì). 規(guī)定每位普通會(huì)員均可參加 1 次摸獎(jiǎng)游戲;每位銀卡會(huì)員均可參加 2 次摸獎(jiǎng)游戲;每位金卡會(huì)員均可參加 3 次摸獎(jiǎng)游戲(每次摸獎(jiǎng)的結(jié)果相互獨(dú)立) .
以方案 2 的獎(jiǎng)勵(lì)金的數(shù)學(xué)期望為依據(jù),請(qǐng)你預(yù)測(cè)哪-種方案投資較少?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,(其中
為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),函數(shù)
有最小值
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率與雙曲線
的離心率互為倒數(shù),
分別為橢圓的左、右頂點(diǎn),且
.
(1)求橢圓
的方程;
(2)已知過(guò)左頂點(diǎn)
的直線
與橢圓
另交于點(diǎn)
,與
軸交于點(diǎn)
,在平面內(nèi)是否存在一定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)的坐標(biāo),并求
面積的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護(hù)知識(shí),某校開(kāi)展了“疫情防護(hù)”網(wǎng)絡(luò)知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加該活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿(mǎn)分為100分)分為6組:
,得到如圖所示的頻率分布直方圖.
![]()
(1)求
的值,并估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):
.
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
經(jīng)過(guò)點(diǎn)
,
,
是C的左、右焦點(diǎn),過(guò)
的直線l與C交于A,B兩點(diǎn),且
的周長(zhǎng)為
.
(1)求C的方程;
(2)若
,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,曲線
在點(diǎn)
處的切線與直線
平行,求
的值;
(2)若
,且函數(shù)
的值域?yàn)?/span>
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知衡量病毒傳播能力的最重要指標(biāo)叫做傳播指數(shù)RO.它指的是,在自然情況下(沒(méi)有外力介入,同時(shí)所有人都沒(méi)有免疫力),一個(gè)感染到某種傳染病的人,會(huì)把疾病傳染給多少人的平均數(shù).它的簡(jiǎn)單計(jì)算公式是:
確認(rèn)病例增長(zhǎng)率
系列間隔,其中系列間隔是指在一個(gè)傳播鏈中,兩例連續(xù)病例的間隔時(shí)間(單位:天).根據(jù)統(tǒng)計(jì),確認(rèn)病例的平均增長(zhǎng)率為
,兩例連續(xù)病例的間隔時(shí)間的平均數(shù)為
天,根據(jù)以上RO數(shù)據(jù)計(jì)算,若甲得這種傳染病,則
輪傳播后由甲引起的得病的總?cè)藬?shù)約為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com