【題目】如圖,在平面直角坐標系中,四邊形OABC為菱形,點C的坐標為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發,沿x軸正方向以每秒1個單位長度的速度運動,設直線l與菱形OABC的兩邊分別交于點M、N(點M在點N的上方).
(1)求A、B兩點的坐標;
(2)設△OMN的面積為S,直線l運動時間為t秒(0≤t≤6),試求S與t的函數表達式;
(3)在題(2)的條件下,是否存在某一時刻,使得△OMN的面積與OABC的面積之比為3:4?如果存在,請求出t的取值;如果不存在,請說明理由.
![]()
【答案】(1)A(2,2
),B(6,2
);(2)S=
t2;S=
t;S=﹣
t2+3
t;(3)不存在,理由見解析;不存在某一時刻,使得△OMN的面積與OABC的面積之比為3:4.
【解析】
(1)根菱形性質得出OA=AB=BC=CO=4,過A作AD⊥OC于D,求出AD、OD,即可得出答案;
(2)有三種情況:①當0≤t≤2時,直線l與OA、OC兩邊相交,②當2<t≤4時,直線l與AB、OC兩邊相交,③當4<t≤6時,直線l與AB、BC兩邊相交,畫出圖形求出即可;
(3)分為以上三種情況,求出得到的方程的解,看看是否在所對應的范圍內,即可進行判斷.
解:(1)∵四邊形OABC為菱形,點C的坐標是(4,0),
∴OA=AB=BC=CO=4,
過A作AD⊥OC于D,
∵∠AOC=60°,
∴OD=2,AD=
,
∴A(2,
),B(6,
);
(2)直線l從y軸出發,沿x軸正方向運動與菱形OABC的兩邊相交有三種情況:①如圖1,
![]()
當0≤t≤2時,直線l與OA、OC兩邊相交,
∵MN⊥OC,
∴ON=t,
∴MN=ONtan60°=
t,
∴S=
ONMN=
t2;
②當2<t≤4時,直線l與AB、OC兩邊相交,如圖2,
![]()
S=
ONMN=
×t×
=
t;
③當4<t≤6時,直線l與AB、BC兩邊相交,如圖3,
![]()
設直線l與x軸交于H,
MN=
,
∴S=
MNOH=
(t
)t=
;
(3)答:不存在,
理由是:假設存在某一時刻,使得△OMN的面積與OABC的面積之比為3:4,
菱形AOCB的面積是4×2
=8
,
①
t2:8
=3:4,
解得:t=±2
,
∵0≤t≤2,
∴此時不符合題意舍去;
②
t:8
=3:4,
解得:t=6(舍去);
③(
):8
=3:4,
此方程無解.
綜合上述,不存在某一時刻,使得△OMN的面積與OABC的面積之比為3:4.
科目:初中數學 來源: 題型:
【題目】如何求tan75°的值?按下列方法作圖可解決問題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點M,在射線BM上截取線段BD,使BD=AB,連接AD,依據此圖可求得tan75°的值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,以AB為直徑的OO與BC相交于點D,與AC相交于點E,DF⊥AC,垂足為F,連接DE,過點A作AG⊥DE,垂足為G,AG與⊙O交于點H.
(1)求證:DF是⊙O的切線;
(2)若∠CAG=25°,求弧AH的長;
(3)若tan∠CDF=
,求AE的長;
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校1200名學生發起向貧困山區學生捐款活動,為了解捐款情況,學生會隨機抽取了部分學生的捐款金額,并用得到的數據繪制了如下統計圖①和圖②.
![]()
請根據以上信息,解答下列問題:
(1)本次抽樣調查的樣本容量為____;
(2)圖①中“20元”對應扇形的圓心角的度數為_____°;
(3)估計該校本次活動捐款金額為15元以上(含15元)的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經過A,B,D三點.
(1)求證:AB是⊙O的直徑;
(2)判斷DE與⊙O的位置關系,并加以證明;
(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據調查結果進行數據整理后繪制出的不完整的統計圖:
![]()
請根據圖中提供的信息,解答下列問題:
(1)求被調查的學生總人數;
(2)補全條形統計圖,并求扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;
(3)若該校共有800名學生,請估計“最想去景點B“的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),點F,G,P分別是DE,BC,CD的中點,連接PF,PG.
![]()
(1)如圖①,α=90°,點D在AB上,則∠FPG= °;
(2)如圖②,α=60°,點D不在AB上,判斷∠FPG的度數,并證明你的結論;
(3)連接FG,若AB=5,AD=2,固定△ABC,將△ADE繞點A旋轉,當PF的長最大時,FG的長為 (用含α的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將拋物線M1:y=ax2+4x向右平移3個單位,再向上平移3個單位,得到拋物線M2,直線y=x與M1的一個交點記為A,與M2的一個交點記為B,點A的橫坐標是﹣3.
(1)求a的值及M2的表達式;
(2)點C是線段AB上的一個動點,過點C作x軸的垂線,垂足為D,在CD的右側作正方形CDEF.
①當點C的橫坐標為2時,直線y=x+n恰好經過正方形CDEF的頂點F,求此時n的值;
②在點C的運動過程中,若直線y=x+n與正方形CDEF始終沒有公共點,求n的取值范圍(直接寫出結果).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,M為AD邊上一點,MB平分∠AMC.
(1)如圖1,求證:BC=MC;
(2)如圖2,G為BM的中點,連接AG、DG,過點M作MN∥AB交DG于點E、交BC于點N.
①求證:AG⊥DG;
②當DGGE=13時,求BM的長.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com