【題目】設(shè)橢圓
的右焦點為
,過點
作與
軸垂直的直線
交橢圓于
,
兩點(點
在第一象限),過橢圓的左頂點和上頂點的直線
與直線
交于
點,且滿足
,設(shè)
為坐標(biāo)原點,若
,
,則該橢圓的離心率為( )
A.
B.
C.
或
D. ![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在相同的條件下投籃5輪,每輪甲、乙各投籃10次,投籃命中次數(shù)的情況如圖所示(實線為甲的折線圖,虛線為乙的折線圖),則以下說法錯誤的是( )
![]()
A. 甲投籃命中次數(shù)的眾數(shù)比乙的小
B. 甲投籃命中次數(shù)的平均數(shù)比乙的小
C. 甲投籃命中次數(shù)的中位數(shù)比乙的大
D. 甲投籃命中的成績比乙的穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生的某天上網(wǎng)的時間,隨機對
名男生和
名女生進行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計結(jié)果:
表1:男生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘) |
|
|
|
|
|
人數(shù) |
|
|
|
|
|
表2:女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘) |
|
|
|
|
|
人數(shù) |
|
|
|
|
|
(1)用分層抽樣在
選取
人,再隨機抽取
人,求抽取的
人都是女生的概率;
(2)完成下面的
列聯(lián)表,并回答能否有
的把握認為“大學(xué)生上網(wǎng)時間與性別有關(guān)”?
上網(wǎng)時間少于 | 上網(wǎng)時間不少于 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:![]()
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:
與
軸相切.
(1)求
的值;
(2)求圓M在
軸上截得的弦長;
(3)若點
是直線
上的動點,過點
作直線
與圓M相切,
為切點,求四邊形
面積的最小值.
【答案】(1)
(2)
(3) ![]()
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進行求解;(2) 令
,得到關(guān)于
的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點到直線的的距離進行求解.
試題解析:(1)
∵圓M:
與
軸相切
∴
∴
(2) 令
,則
∴
∴
(3) ![]()
∵
的最小值等于點
到直線
的距離,
∴
∴![]()
∴四邊形
面積的最小值為
.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系
中,圓
的方程為
,且圓
與
軸交于
,
兩點,設(shè)直線
的方程為
.
![]()
(1)當(dāng)直線
與圓
相切時,求直線
的方程;
(2)已知直線
與圓
相交于
,
兩點.
(。┤
,求實數(shù)
的取值范圍;
(ⅱ)直線
與直線
相交于點
,直線
,直線
,直線
的斜率分別為
,
,
,
是否存在常數(shù)
,使得
恒成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖像過點
,且在
處取得極值.
(1)若對任意
有
恒成立,求實數(shù)
的取值范圍;
(2)當(dāng)
,試討論函數(shù)
的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
的圖象為
,則以下結(jié)論中正確的是__________.(寫出所有正確結(jié)論的編號)
①圖象
關(guān)于直線
對稱;
②圖象
關(guān)于點
對稱;
③函數(shù)
在區(qū)間
內(nèi)是增函數(shù);
④由
的圖象向右平移
個單位長度可以得到圖象
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左右焦點分別為F1,F2,離心率為
,設(shè)過點F2的直線l被橢圓C截得的線段為MN,當(dāng)l⊥x軸時,|MN|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在一點P,使得當(dāng)l變化時,總有PM與PN所在的直線關(guān)于x軸對稱?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
是衡量空氣污染程度的一個指標(biāo),為了了解
市空氣質(zhì)量情況,從
年每天的
值的數(shù)據(jù)中隨機抽取
天的數(shù)據(jù),其頻率分布直方圖如圖所示.將
值劃分成區(qū)間
、
、
、
,分別稱為一級、二級、三級和四級,統(tǒng)計時用頻率估計概率 .
![]()
(1)根據(jù)
年的數(shù)據(jù)估計該市在
年中空氣質(zhì)量為一級的天數(shù);
(2)按照分層抽樣的方法,從樣本二級、三級、四級中抽取
天的
數(shù)據(jù),再從這
個數(shù)據(jù)中隨機抽取
個,求僅有二級天氣的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
市某機構(gòu)為了調(diào)查該市市民對我國申辦
年足球世界杯的態(tài)度,隨機選取了
位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 |
| ||
女性市民 |
| ||
合計 |
|
|
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否在犯錯誤的概率不超過
的前提下認為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有
位退休老人,其中
位是教師,現(xiàn)從這
位退休老人中隨機抽取
人,求至多有
位老師的概率.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com