已知函數(shù)
(
).
(1)當(dāng)
時,求
的圖象在
處的切線方程;
(2)若函數(shù)
在
上有兩個零點,求實數(shù)
的取值范圍;
(3)若函數(shù)
的圖象與
軸有兩個不同的交點
,且
,求證:
(其中
是
的導(dǎo)函數(shù)).
(1)
;(2)
;(3)證明見解析.
解析試題分析:解題思路:(1)利用導(dǎo)數(shù)的幾何意義求解即可;(2)利用該區(qū)間上的極值的正負(fù)判斷函數(shù)零點的個數(shù);(3)通過構(gòu)造函數(shù)求最值進(jìn)行證明.規(guī)律總結(jié):利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)是常見題型,主要是通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求單調(diào)區(qū)間、求極值、最值以及不等式恒成立等問題,往往計算量較大,思維量大,要求學(xué)生有較高的邏輯推理能力.
試題解析:(1)當(dāng)
時,
,
,切點坐標(biāo)為
,
切線的斜率
,則切線方程為
,即
.
(2)
,則
,
因
,故
時,
.當(dāng)
時,
;當(dāng)
時,
.
所以
在
處取得極大值
.
又
,
,
,則
,
在
上有兩個零點,則![]()
解得
,即實數(shù)
的取值范圍是
.
(3)因為
的圖象與
軸交于兩個不同的點
,
所以方程
的兩個根為
,則
兩式相減得
.又
,
,則![]()
.
下證
(*),即證明
,
,
因為
,∴
,即證明
在
上恒成立.
所以
,又
,∴
,
所以
在
上是增函數(shù),則
,從而知
,
故(*)式成立,即
成立.
考點:1.導(dǎo)數(shù)的幾何意義;2.利用導(dǎo)數(shù)研究函數(shù)的零點.
科目:高中數(shù)學(xué) 來源: 題型:填空題
若函數(shù)f(x)在定義域R內(nèi)可導(dǎo),f(2+x)=f(2-x),且當(dāng)x∈(-∞
,2)時,(x-2)
>0.設(shè)a=f(1
),
,c=f(4),則a,b,c的大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求曲線
在點(1,0)處的切線方程;
(2)設(shè)函數(shù)
,其中
,求函數(shù)
在
上的最小值.(其中
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖象為曲線E.
(1)若a = 3,b = -9,求函數(shù)f(x)的極值;
(2)若曲線E上存在點P,使曲線E在P點處的切線與x軸平行,求a,b的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(![]()
R).
(1)當(dāng)
時,求函數(shù)
的極值;
(2)若函數(shù)
的圖象與
軸有且只有一個交點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln(x+1)+ax2-x,a∈R.
(1)當(dāng)
時,求函數(shù)y=f(x)的極值;
(2)是否存在實數(shù)b∈(0,1),使得當(dāng)x∈(-1,b]時,函數(shù)f(x)的最大值為f(b)?若存在,求實數(shù)a的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是函數(shù)
的一個極值點,其中
.
(1)
與
的關(guān)系式;
(2)求
的單調(diào)區(qū)間;
(3)當(dāng)
時,函數(shù)
的圖象上任意一點處的切線的斜率恒大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
是函數(shù)
的極值點,求曲線
在點
處的切線方程;
(2)若函數(shù)
在
上為單調(diào)增函數(shù),求
的取值范圍;
(3)設(shè)
為正實數(shù),且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
)
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
在
處取得極值,不等式
對任意
恒成立,求實數(shù)
的取值范圍;
(3)當(dāng)
時,證明不等式
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com