【題目】已知函數f(x)=ln(2ax+1)+
﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數a的值;
(2)若y=f(x)在[3,+∞)上為增函數,求實數a的取值范圍;
(3)當a=﹣
時,方程f(1﹣x)=
有實根,求實數b的最大值.
【答案】
(1)解:
=
因為x=2為f(x)的極值點,所以f'(2)=0
即
,解得a=0.
又當a=0時,f'(x)=x(x﹣2),從而x=2為f(x)的極值點成立
(2)解:因為f(x)在區間[3,+∞)上為增函數,
所以
在區間[3,+∞)上恒成立.
①當a=0時,f'(x)=x(x﹣2)≥0在[3,+∞)上恒成立,所以f(x)在[3,+∞)上為增函數,故a=0符合題意.
②當a≠0時,由函數f(x)的定義域可知,必須有2ax+1>0對x≥3恒成立,故只能a>0,
所以2ax2+(1﹣4a)x﹣(4a2+2)≥0對x∈[3,+∞)上恒成立.
令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其對稱軸為
,
因為a>0所以
,從而g(x)≥0在[3,+∞)上恒成立,只要g(3)≥0即可,
因為g(3)=﹣4a2+6a+1≥0,
解得
.
因為a>0,所以
.
由①可得,a=0時,符合題意;
綜上所述,a的取值范圍為[0,
]
(3)解:若
時,方程
x>0
可化為,
.
問題轉化為b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,
即求函數g(x)=xlnx+x2﹣x3的值域
以下給出兩種求函數g(x)值域的方法:
方法1:因為g(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),
則
,
所以當0<x<1,h′(x)>0,從而h(x)在(0,1)上為增函數,
當x>1,h′(x)<0,從而h(x')在(1,+∞上為減函數
因此h(x)≤h(1)=0.
而x>1,故b=xh(x)≤0,
因此當x=1時,b取得最大值0.
方法2:因為g(x)=x(lnx+x﹣x2),所以g'(x)=lnx+1+2x﹣3x2.
設p(x)=lnx+1+2x﹣3x2,則
.
當
時,p'(x)>0,所以p(x)在
上單調遞增;
當
時,p'(x)<0,所以p(x)在
上單調遞減;
因為p(1)=0,故必有
,又
,
因此必存在實數
使得g'(x0)=0,
∴當0<x<x0時,g′(x)<0,所以g(x)在(0,x0)上單調遞減;
當x0<x<1,g′(x)>0,所以,g(x)在(x0,1)上單調遞增;
又因為
,
當x→0時,lnx+
<0,則g(x)<0,又g(1)=0.
因此當x=1時,b取得最大值0
【解析】(1)先對函數求導,由x=2為f(x)的極值點,可得f'(2)=0,代入可求a(2)由題意可得
在區間[3,+∞)上恒成立,①當a=0時,容易檢驗是否符合題意,②當a≠0時,由題意可得必須有2ax+1>0對x≥3恒成立,則a>0,從而2ax2+(1﹣4a)x﹣(4a2+2)≥0對x∈[3,+∞0上恒成立.考查函數g(x)=2ax2+(1﹣4a)x﹣(4a2+2),結合二次函數的性質可求(3)由題意可得
.問題轉化為b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,即求函數g(x)=xlnx+x2﹣x3的值域.方法1:構造函數g(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),對函數h(x)求導,利用導數判斷函數h(x)的單調性,進而可求方法2:對函數g(x)=x(lnx+x﹣x2)求導可得g'(x)=lnx+1+2x﹣3x2 . 由導數知識研究函數p(x)=lnx+1+2x﹣3x2 , 的單調性可求函數g(x)的零點,即g'(x0)=0,從而可得函數g(x)的單調性,結合
,可知x→0時,lnx+
<0,則g(x)<0,又g(1)=0可求b的最大值
科目:高中數學 來源: 題型:
【題目】某手機廠商推出一款6吋大屏手機,現對500名該手機用戶(200名女性,300名男性)進行調查,對手機進行評分,評分的頻數分布表如下:
女性用戶 | 分值區間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數 | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數 | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列頻率分布直方圖,并指出女性用戶和男性用戶哪組評分更穩定(不計算具體值,給出結論即可);![]()
(Ⅱ)根據評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進行了“本屆奧運會中國隊表現”的滿意度調查(結果只有“滿意”和“不滿意”兩種),從被調查的學生中隨機抽取了50人,具體的調查結果如表:
班號 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數 | 5 | 9 | 11 | 9 | 7 | 9 |
滿意人數 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年級全體學生中隨機抽取一名學生,由以上統計數據估計該生持滿意態度的概率;
(2)若從一班至二班的調查對象中隨機選取4人進行追蹤調查,記選中的4人中對“本屆奧運會中國隊表現”不滿意的人數為ξ,求隨機變量ξ的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區經過一年的新農村建設,農村的經濟收入增加了一倍.實現翻番.為更好地了解該地區農村的經濟收入變化情況,統計了該地區新農村建設前后農村的經濟收入構成比例.得到如下餅圖:
![]()
則下面結論中不正確的是
A. 新農村建設后,種植收入減少
B. 新農村建設后,其他收入增加了一倍以上
C. 新農村建設后,養殖收入增加了一倍
D. 新農村建設后,養殖收入與第三產業收入的總和超過了經濟收入的一半
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(2ωx﹣
)(ω>0)的最小正周期為4π,則( )
A.函數f(x)的圖象關于點(
,0)對稱
B.函數f(x)的圖象關于直線x=
對稱
C.函數f(x)的圖象在(
,π)上單調遞減
D.函數f(x)的圖象在(
,π)上單調遞增
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com